IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2409.20397.html
   My bibliography  Save this paper

A Framework for the Construction of a Sentiment-Driven Performance Index: The Case of DAX40

Author

Listed:
  • Fabian Billert
  • Stefan Conrad

Abstract

We extract the sentiment from german and english news articles on companies in the DAX40 stock market index and use it to create a sentiment-powered pendant. Comparing it to existing products which adjust their weights at pre-defined dates once per month, we show that our index is able to react more swiftly to sentiment information mined from online news. Over the nearly 6 years we considered, the sentiment index manages to create an annualized return of 7.51% compared to the 2.13% of the DAX40, while taking transaction costs into account. In this work, we present the framework we employed to develop this sentiment index.

Suggested Citation

  • Fabian Billert & Stefan Conrad, 2024. "A Framework for the Construction of a Sentiment-Driven Performance Index: The Case of DAX40," Papers 2409.20397, arXiv.org.
  • Handle: RePEc:arx:papers:2409.20397
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2409.20397
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David E. Allen & Michael McAleer & Abhay K. Singh, 2019. "Daily market news sentiment and stock prices," Applied Economics, Taylor & Francis Journals, vol. 51(30), pages 3212-3235, June.
    2. Xingchen Wan & Jie Yang & Slavi Marinov & Jan-Peter Calliess & Stefan Zohren & Xiaowen Dong, 2020. "Sentiment Correlation in Financial News Networks and Associated Market Movements," Papers 2011.06430, arXiv.org, revised Feb 2021.
    3. Gabriele Ranco & Darko Aleksovski & Guido Caldarelli & Miha Grčar & Igor Mozetič, 2015. "The Effects of Twitter Sentiment on Stock Price Returns," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-21, September.
    4. Pekka Malo & Ankur Sinha & Pekka Korhonen & Jyrki Wallenius & Pyry Takala, 2014. "Good debt or bad debt: Detecting semantic orientations in economic texts," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(4), pages 782-796, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paola Cerchiello & Giancarlo Nicola, 2018. "Assessing News Contagion in Finance," Econometrics, MDPI, vol. 6(1), pages 1-19, February.
    2. Costola, Michele & Hinz, Oliver & Nofer, Michael & Pelizzon, Loriana, 2023. "Machine learning sentiment analysis, COVID-19 news and stock market reactions," Research in International Business and Finance, Elsevier, vol. 64(C).
    3. Ankur Sinha & Satishwar Kedas & Rishu Kumar & Pekka Malo, 2022. "SEntFiN 1.0: Entity‐aware sentiment analysis for financial news," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 73(9), pages 1314-1335, September.
    4. Paola Cerchiello & Giancarlo Nicola, 2017. "Assessing News Contagion in Finance," DEM Working Papers Series 139, University of Pavia, Department of Economics and Management.
    5. Sinha, Ankur & Kedas, Satishwar & Kumar, Rishu & Malo, Pekka, 2019. "Buy, Sell or Hold: Entity-Aware Classification of Business News," IIMA Working Papers WP 2019-04-02, Indian Institute of Management Ahmedabad, Research and Publication Department.
    6. Xiaohong Shen & Gaoshan Wang & Yue Wang & Alfred Peris, 2021. "The Influence of Research Reports on Stock Returns: The Mediating Effect of Machine-Learning-Based Investor Sentiment," Discrete Dynamics in Nature and Society, Hindawi, vol. 2021, pages 1-14, December.
    7. Yousaf, Imran & Youssef, Manel & Goodell, John W., 2022. "Quantile connectedness between sentiment and financial markets: Evidence from the S&P 500 twitter sentiment index," International Review of Financial Analysis, Elsevier, vol. 83(C).
    8. Kirtac, Kemal & Germano, Guido, 2024. "Sentiment trading with large language models," Finance Research Letters, Elsevier, vol. 62(PB).
    9. Chen, Cathy Yi-Hsuan & Fengler, Matthias R. & Härdle, Wolfgang Karl & Liu, Yanchu, 2022. "Media-expressed tone, option characteristics, and stock return predictability," Journal of Economic Dynamics and Control, Elsevier, vol. 134(C).
    10. Matteo Iacopini & Carlo R.M.A. Santagiustina, 2021. "Filtering the intensity of public concern from social media count data with jumps," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1283-1302, October.
    11. Darko Cherepnalkoski & Andreas Karpf & Igor Mozetič & Miha Grčar, 2016. "Cohesion and Coalition Formation in the European Parliament: Roll-Call Votes and Twitter Activities," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-27, November.
    12. Thomas Renault, 2020. "Sentiment analysis and machine learning in finance: a comparison of methods and models on one million messages," Digital Finance, Springer, vol. 2(1), pages 1-13, September.
    13. Marlene Amstad & Leonardo Gambacorta & Chao He & Dora Xia, 2021. "Trade sentiment and the stock market: new evidence based on big data textual analysis of Chinese media," BIS Working Papers 917, Bank for International Settlements.
    14. Gianluca Anese & Marco Corazza & Michele Costola & Loriana Pelizzon, 2023. "Impact of public news sentiment on stock market index return and volatility," Computational Management Science, Springer, vol. 20(1), pages 1-36, December.
    15. Chou, Ke-Hsin & Day, Min-Yuh & Chiu, Chien-Liang, 2023. "Do bitcoin news information flow and return volatility fit the sequential information arrival hypothesis and the mixture of distribution hypothesis?," International Review of Economics & Finance, Elsevier, vol. 88(C), pages 365-385.
    16. Travis Adams & Andrea Ajello & Diego Silva & Francisco Vazquez-Grande, 2023. "More than Words: Twitter Chatter and Financial Market Sentiment," Papers 2305.16164, arXiv.org.
    17. Seok, Sangik & Cho, Hoon & Ryu, Doojin, 2022. "Scheduled macroeconomic news announcements and intraday market sentiment," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    18. Igor Mozetič & Miha Grčar & Jasmina Smailović, 2016. "Multilingual Twitter Sentiment Classification: The Role of Human Annotators," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-26, May.
    19. Chandan Singh & Armin Askari & Rich Caruana & Jianfeng Gao, 2023. "Augmenting interpretable models with large language models during training," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    20. Agrrawal, Pankaj & Agarwal, Rajat, 2023. "A Longer-Term evaluation of Information releases by Influential market Agents and the Semi-strong market Efficiency," EconStor Preprints 273555, ZBW - Leibniz Information Centre for Economics.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2409.20397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.