IDEAS home Printed from https://ideas.repec.org/a/cup/polals/v9y2001i03p227-241_00.html
   My bibliography  Save this article

Multidimensional Analysis of Roll Call Data via Bayesian Simulation: Identification, Estimation, Inference, and Model Checking

Author

Listed:
  • Jackman, Simon

Abstract

Vote-specific parameters are often by-products of roll call analysis, the primary goal being the measurement of legislators' ideal points. But these vote-specific parameters are more important in higher-dimensional settings: prior restrictions on vote parameters help identify the model, and researchers often have prior beliefs about the nature of the dimensions underlying the proposal space. Bayesian methods provide a straightforward and rigorous way for incorporating these prior beliefs into roll call analysis. I demonstrate this by exploiting the close connections among roll call analysis, item-response models, and “full-information” factor analysis. Vote-specific discrimination parameters are equivalent to factor loadings, and as in factor analysis, they (1) enable researchers to discern the substantive content of the recovered dimensions, (2) can be used for assessing dimensionality and model checking, and (3) are an obvious vehicle for introducing and testing researchers' prior beliefs about the dimensions. Bayesian simulation facilitates these uses of discrimination parameters, by simplifying estimation and inference for the massive number of parameters generated by roll call analysis.

Suggested Citation

  • Jackman, Simon, 2001. "Multidimensional Analysis of Roll Call Data via Bayesian Simulation: Identification, Estimation, Inference, and Model Checking," Political Analysis, Cambridge University Press, vol. 9(3), pages 227-241, January.
  • Handle: RePEc:cup:polals:v:9:y:2001:i:03:p:227-241_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S1047198700003818/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:polals:v:9:y:2001:i:03:p:227-241_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/pan .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.