IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2007.06510.html
   My bibliography  Save this paper

Mean-variance-utility portfolio selection with time and state dependent risk aversion

Author

Listed:
  • Ben-Zhang Yang
  • Xin-Jiang He
  • Song-Ping Zhu

Abstract

Under mean-variance-utility framework, we propose a new portfolio selection model, which allows wealth and time both have influences on risk aversion in the process of investment. We solved the model under a game theoretic framework and analytically derived the equilibrium investment (consumption) policy. The results conform with the facts that optimal investment strategy heavily depends on the investor's wealth and future income-consumption balance as well as the continuous optimally consumption process is highly dependent on the consumption preference of the investor.

Suggested Citation

  • Ben-Zhang Yang & Xin-Jiang He & Song-Ping Zhu, 2020. "Mean-variance-utility portfolio selection with time and state dependent risk aversion," Papers 2007.06510, arXiv.org, revised Aug 2020.
  • Handle: RePEc:arx:papers:2007.06510
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2007.06510
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cvitanic, Jaksa & Lazrak, Ali & Wang, Tan, 2008. "Implications of the Sharpe ratio as a performance measure in multi-period settings," Journal of Economic Dynamics and Control, Elsevier, vol. 32(5), pages 1622-1649, May.
    2. Ben-Zhang Yang & Xiaoping Lu & Guiyuan Ma & Song-Ping Zhu, 2020. "Robust Portfolio Optimization with Multi-Factor Stochastic Volatility," Journal of Optimization Theory and Applications, Springer, vol. 186(1), pages 264-298, July.
    3. Ben-Zhang Yang & Jia Yue & Nan-Jing Huang, 2019. "Equilibrium Price Of Variance Swaps Under Stochastic Volatility With Lévy Jumps And Stochastic Interest Rate," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(04), pages 1-33, June.
    4. Leippold, Markus & Trojani, Fabio & Vanini, Paolo, 2004. "A geometric approach to multiperiod mean variance optimization of assets and liabilities," Journal of Economic Dynamics and Control, Elsevier, vol. 28(6), pages 1079-1113, March.
    5. Duan Li & Wan‐Lung Ng, 2000. "Optimal Dynamic Portfolio Selection: Multiperiod Mean‐Variance Formulation," Mathematical Finance, Wiley Blackwell, vol. 10(3), pages 387-406, July.
    6. Yang, Ben-Zhang & Yue, Jia & Wang, Ming-Hui & Huang, Nan-Jing, 2019. "Volatility swaps valuation under stochastic volatility with jumps and stochastic intensity," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 73-84.
    7. Guiyuan Ma & Song-Ping Zhu, 2019. "Optimal investment and consumption under a continuous-time cointegration model with exponential utility," Quantitative Finance, Taylor & Francis Journals, vol. 19(7), pages 1135-1149, July.
    8. Cairns, Andrew, 2000. "Some Notes on the Dynamics and Optimal Control of Stochastic Pension Fund Models in Continuous Time," ASTIN Bulletin, Cambridge University Press, vol. 30(1), pages 19-55, May.
    9. Suleyman Basak & Georgy Chabakauri, 2010. "Dynamic Mean-Variance Asset Allocation," The Review of Financial Studies, Society for Financial Studies, vol. 23(8), pages 2970-3016, August.
    10. Leonard MacLean & Yonggan Zhao & William Ziemba, 2011. "Mean-variance versus expected utility in dynamic investment analysis," Computational Management Science, Springer, vol. 8(1), pages 3-22, April.
    11. Isabelle Bajeux-Besnainou & Roland Portait, 1998. "Dynamic Asset Allocation in a Mean-Variance Framework," Management Science, INFORMS, vol. 44(11-Part-2), pages 79-95, November.
    12. Ben-Zhang Yang & Xiaoping Lu & Guiyuan Ma & Song-Ping Zhu, 2019. "Robust portfolio optimization with multi-factor stochastic volatility," Papers 1910.06872, arXiv.org, revised Jun 2020.
    13. Tomasz R. Bielecki & Hanqing Jin & Stanley R. Pliska & Xun Yu Zhou, 2005. "Continuous‐Time Mean‐Variance Portfolio Selection With Bankruptcy Prohibition," Mathematical Finance, Wiley Blackwell, vol. 15(2), pages 213-244, April.
    14. Jaksa Cvitanic & Fernando Zapatero, 2004. "Introduction to the Economics and Mathematics of Financial Markets," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262532654, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ben-Zhang Yang & Xin-Jiang He & Song-Ping Zhu, 2020. "Continuous time mean-variance-utility portfolio problem and its equilibrium strategy," Papers 2005.06782, arXiv.org, revised Nov 2020.
    2. Suleyman Basak & Georgy Chabakauri, 2010. "Dynamic Mean-Variance Asset Allocation," The Review of Financial Studies, Society for Financial Studies, vol. 23(8), pages 2970-3016, August.
    3. Min Dai & Hanqing Jin & Steven Kou & Yuhong Xu, 2021. "A Dynamic Mean-Variance Analysis for Log Returns," Management Science, INFORMS, vol. 67(2), pages 1093-1108, February.
    4. Yuanyuan Zhang & Xiang Li & Sini Guo, 2018. "Portfolio selection problems with Markowitz’s mean–variance framework: a review of literature," Fuzzy Optimization and Decision Making, Springer, vol. 17(2), pages 125-158, June.
    5. Cvitanic, Jaksa & Lazrak, Ali & Wang, Tan, 2008. "Implications of the Sharpe ratio as a performance measure in multi-period settings," Journal of Economic Dynamics and Control, Elsevier, vol. 32(5), pages 1622-1649, May.
    6. Shuzhen Yang, 2019. "Multi-time state mean-variance model in continuous time," Papers 1912.01793, arXiv.org.
    7. Wang, J. & Forsyth, P.A., 2011. "Continuous time mean variance asset allocation: A time-consistent strategy," European Journal of Operational Research, Elsevier, vol. 209(2), pages 184-201, March.
    8. Aivaliotis, Georgios & Palczewski, Jan, 2014. "Investment strategies and compensation of a mean–variance optimizing fund manager," European Journal of Operational Research, Elsevier, vol. 234(2), pages 561-570.
    9. Tomas Björk & Agatha Murgoci & Xun Yu Zhou, 2014. "Mean–Variance Portfolio Optimization With State-Dependent Risk Aversion," Mathematical Finance, Wiley Blackwell, vol. 24(1), pages 1-24, January.
    10. Dang, D.M. & Forsyth, P.A., 2016. "Better than pre-commitment mean-variance portfolio allocation strategies: A semi-self-financing Hamilton–Jacobi–Bellman equation approach," European Journal of Operational Research, Elsevier, vol. 250(3), pages 827-841.
    11. Chi Kin Lam & Yuhong Xu & Guosheng Yin, 2016. "Dynamic portfolio selection without risk-free assets," Papers 1602.04975, arXiv.org.
    12. Shihao Zhu & Jingtao Shi, 2019. "Optimal Reinsurance and Investment Strategies under Mean-Variance Criteria: Partial and Full Information," Papers 1906.08410, arXiv.org, revised Jun 2020.
    13. Xiangyu Cui & Duan Li & Xun Li, 2014. "Mean-Variance Policy for Discrete-time Cone Constrained Markets: The Consistency in Efficiency and Minimum-Variance Signed Supermartingale Measure," Papers 1403.0718, arXiv.org.
    14. Xiangyu Cui & Jianjun Gao & Yun Shi, 2021. "Multi-period mean–variance portfolio optimization with management fees," Operational Research, Springer, vol. 21(2), pages 1333-1354, June.
    15. Cong, F. & Oosterlee, C.W., 2016. "Multi-period mean–variance portfolio optimization based on Monte-Carlo simulation," Journal of Economic Dynamics and Control, Elsevier, vol. 64(C), pages 23-38.
    16. F. Cong & C. W. Oosterlee, 2017. "On Robust Multi-Period Pre-Commitment And Time-Consistent Mean-Variance Portfolio Optimization," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(07), pages 1-26, November.
    17. Mei Choi Chiu & Hoi Ying Wong & Duan Li, 2012. "Roy’s Safety‐First Portfolio Principle in Financial Risk Management of Disastrous Events," Risk Analysis, John Wiley & Sons, vol. 32(11), pages 1856-1872, November.
    18. Lei Shi, 2010. "Portfolio Analysis and Equilibrium Asset Pricing with Heterogeneous Beliefs," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 9, July-Dece.
    19. Gao, Jianjun & Xiong, Yan & Li, Duan, 2016. "Dynamic mean-risk portfolio selection with multiple risk measures in continuous-time," European Journal of Operational Research, Elsevier, vol. 249(2), pages 647-656.
    20. Lei Shi, 2010. "Portfolio Analysis and Equilibrium Asset Pricing with Heterogeneous Beliefs," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2010, January-A.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2007.06510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.