Multi-period mean–variance portfolio optimization based on Monte-Carlo simulation
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jedc.2016.01.001
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Fu, Chenpeng & Lari-Lavassani, Ali & Li, Xun, 2010. "Dynamic mean-variance portfolio selection with borrowing constraint," European Journal of Operational Research, Elsevier, vol. 200(1), pages 312-319, January.
- Michael W. Brandt & Amit Goyal & Pedro Santa-Clara & Jonathan R. Stroud, 2005.
"A Simulation Approach to Dynamic Portfolio Choice with an Application to Learning About Return Predictability,"
The Review of Financial Studies, Society for Financial Studies, vol. 18(3), pages 831-873.
- Michael W. Brandt & Amit Goyal & Pedro Santa-Clara & Jonathan Storud, 2004. "A Simulation Approach to Dynamic Portfolio Choice with an Application to Learning About Return Predictability," NBER Working Papers 10934, National Bureau of Economic Research, Inc.
- Wang, J. & Forsyth, P.A., 2010. "Numerical solution of the Hamilton-Jacobi-Bellman formulation for continuous time mean variance asset allocation," Journal of Economic Dynamics and Control, Elsevier, vol. 34(2), pages 207-230, February.
- Cui, Xiangyu & Gao, Jianjun & Li, Xun & Li, Duan, 2014. "Optimal multi-period mean–variance policy under no-shorting constraint," European Journal of Operational Research, Elsevier, vol. 234(2), pages 459-468.
- Suleyman Basak & Georgy Chabakauri, 2010.
"Dynamic Mean-Variance Asset Allocation,"
The Review of Financial Studies, Society for Financial Studies, vol. 23(8), pages 2970-3016, August.
- Basak, Suleyman & Chabakauri, Georgy, 2009. "Dynamic Mean-Variance Asset Allocation," CEPR Discussion Papers 7256, C.E.P.R. Discussion Papers.
- Gerrard, Russell & Haberman, Steven & Vigna, Elena, 2004. "Optimal investment choices post-retirement in a defined contribution pension scheme," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 321-342, October.
- Steven Haberman & Elena Vigna, 2002. "Optimal investment strategies and risk measures in defined contribution pension schemes," ICER Working Papers - Applied Mathematics Series 09-2002, ICER - International Centre for Economic Research.
- Haberman, Steven & Vigna, Elena, 2002. "Optimal investment strategies and risk measures in defined contribution pension schemes," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 35-69, August.
- Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
- Wang, J. & Forsyth, P.A., 2011. "Continuous time mean variance asset allocation: A time-consistent strategy," European Journal of Operational Research, Elsevier, vol. 209(2), pages 184-201, March.
- Duan Li & Wan‐Lung Ng, 2000. "Optimal Dynamic Portfolio Selection: Multiperiod Mean‐Variance Formulation," Mathematical Finance, Wiley Blackwell, vol. 10(3), pages 387-406, July.
- Russell Gerrard & Steven Haberman & Elena Vigna, 2006. "The Management of Decumulation Risks in a Defined Contribution Pension Plan," North American Actuarial Journal, Taylor & Francis Journals, vol. 10(1), pages 84-110.
- Tomasz R. Bielecki & Hanqing Jin & Stanley R. Pliska & Xun Yu Zhou, 2005. "Continuous‐Time Mean‐Variance Portfolio Selection With Bankruptcy Prohibition," Mathematical Finance, Wiley Blackwell, vol. 15(2), pages 213-244, April.
- J. Wang & P. A. Forsyth, 2012. "Comparison Of Mean Variance Like Strategies For Optimal Asset Allocation Problems," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(02), pages 1-32.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhu, Yichen & Escobar-Anel, Marcos, 2022. "Polynomial affine approach to HARA utility maximization with applications to OrnsteinUhlenbeck 4/2 models," Applied Mathematics and Computation, Elsevier, vol. 418(C).
- Zhiyi Shen & Chengguo Weng, 2019. "A Backward Simulation Method for Stochastic Optimal Control Problems," Papers 1901.06715, arXiv.org.
- P. A. Forsyth & K. R. Vetzal, 2017. "Robust Asset Allocation For Long-Term Target-Based Investing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(03), pages 1-32, May.
- Vahidreza Yousefi & Siamak Haji Yakhchali & Jolanta Tamošaitienė, 2019. "Application of Duration Measure in Quantifying the Sensitivity of Project Returns to Changes in Discount Rates," Administrative Sciences, MDPI, vol. 9(1), pages 1-14, February.
- Tao Chen & Michael Ludkovski, 2019. "A Machine Learning Approach to Adaptive Robust Utility Maximization and Hedging," Papers 1912.00244, arXiv.org, revised May 2020.
- Kamphol Panyagometh, 2021. "Dynamic Spending and Risk-Based Simulation in Retirement Planning," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 11(4), pages 337-346, April.
- Peter A. Forsyth & George Labahn, 2017. "$\epsilon$-Monotone Fourier Methods for Optimal Stochastic Control in Finance," Papers 1710.08450, arXiv.org, revised Apr 2018.
- Yuqin Sun & Yungao Wu & Gejirifu De, 2023. "A Novel Black-Litterman Model with Time-Varying Covariance for Optimal Asset Allocation of Pension Funds," Mathematics, MDPI, vol. 11(6), pages 1-21, March.
- Michael Ludkovski & Aditya Maheshwari, 2018. "Simulation Methods for Stochastic Storage Problems: A Statistical Learning Perspective," Papers 1803.11309, arXiv.org.
- Rongju Zhang & Nicolas Langren'e & Yu Tian & Zili Zhu & Fima Klebaner & Kais Hamza, 2016. "Dynamic portfolio optimization with liquidity cost and market impact: a simulation-and-regression approach," Papers 1610.07694, arXiv.org, revised Jun 2019.
- Mahdi Massahi & Masoud Mahootchi & Alireza Arshadi Khamseh, 2020. "Development of an efficient cluster-based portfolio optimization model under realistic market conditions," Empirical Economics, Springer, vol. 59(5), pages 2423-2442, November.
- Cong, F. & Oosterlee, C.W., 2016. "On pre-commitment aspects of a time-consistent strategy for a mean-variance investor," Journal of Economic Dynamics and Control, Elsevier, vol. 70(C), pages 178-193.
- repec:hal:wpaper:hal-04086378 is not listed on IDEAS
- Li, Yuying & Forsyth, Peter A., 2019. "A data-driven neural network approach to optimal asset allocation for target based defined contribution pension plans," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 189-204.
- Areski Cousin & J'er^ome Lelong & Tom Picard, 2023. "Mean-variance dynamic portfolio allocation with transaction costs: a Wiener chaos expansion approach," Papers 2305.16152, arXiv.org, revised Jun 2023.
- Kristoffer Andersson & Cornelis W. Oosterlee, 2023. "D-TIPO: Deep time-inconsistent portfolio optimization with stocks and options," Papers 2308.10556, arXiv.org, revised Sep 2023.
- Shiqi Gong & Shuaiqiang Liu & Danny D. Sun, 2023. "Optimal Market Making in the Chinese Stock Market: A Stochastic Control and Scenario Analysis," Papers 2306.02764, arXiv.org.
- Gurdal Ertek & Aysha Al-Kaabi & Aktham Issa Maghyereh, 2022. "Analytical Modeling and Empirical Analysis of Binary Options Strategies," Future Internet, MDPI, vol. 14(7), pages 1-23, July.
- Erdinc Akyildirim & Matteo Gambara & Josef Teichmann & Syang Zhou, 2023. "Randomized Signature Methods in Optimal Portfolio Selection," Papers 2312.16448, arXiv.org.
- Fei Cong & Cornelis W. Oosterlee, 2017. "Accurate and Robust Numerical Methods for the Dynamic Portfolio Management Problem," Computational Economics, Springer;Society for Computational Economics, vol. 49(3), pages 433-458, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Cong, F. & Oosterlee, C.W., 2016. "On pre-commitment aspects of a time-consistent strategy for a mean-variance investor," Journal of Economic Dynamics and Control, Elsevier, vol. 70(C), pages 178-193.
- F. Cong & C. W. Oosterlee, 2017. "On Robust Multi-Period Pre-Commitment And Time-Consistent Mean-Variance Portfolio Optimization," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(07), pages 1-26, November.
- Chi Kin Lam & Yuhong Xu & Guosheng Yin, 2016. "Dynamic portfolio selection without risk-free assets," Papers 1602.04975, arXiv.org.
- Xiangyu Cui & Duan Li & Xun Li, 2014. "Mean-Variance Policy for Discrete-time Cone Constrained Markets: The Consistency in Efficiency and Minimum-Variance Signed Supermartingale Measure," Papers 1403.0718, arXiv.org.
- Wang, J. & Forsyth, P.A., 2011. "Continuous time mean variance asset allocation: A time-consistent strategy," European Journal of Operational Research, Elsevier, vol. 209(2), pages 184-201, March.
- Yao, Haixiang & Lai, Yongzeng & Ma, Qinghua & Jian, Minjie, 2014. "Asset allocation for a DC pension fund with stochastic income and mortality risk: A multi-period mean–variance framework," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 84-92.
- Aivaliotis, Georgios & Palczewski, Jan, 2014. "Investment strategies and compensation of a mean–variance optimizing fund manager," European Journal of Operational Research, Elsevier, vol. 234(2), pages 561-570.
- Dang, D.M. & Forsyth, P.A., 2016. "Better than pre-commitment mean-variance portfolio allocation strategies: A semi-self-financing Hamilton–Jacobi–Bellman equation approach," European Journal of Operational Research, Elsevier, vol. 250(3), pages 827-841.
- De Gennaro Aquino, Luca & Sornette, Didier & Strub, Moris S., 2023. "Portfolio selection with exploration of new investment assets," European Journal of Operational Research, Elsevier, vol. 310(2), pages 773-792.
- Yuanyuan Zhang & Xiang Li & Sini Guo, 2018. "Portfolio selection problems with Markowitz’s mean–variance framework: a review of literature," Fuzzy Optimization and Decision Making, Springer, vol. 17(2), pages 125-158, June.
- Xiangyu Cui & Xun Li & Duan Li & Yun Shi, 2014. "Time Consistent Behavior Portfolio Policy for Dynamic Mean-Variance Formulation," Papers 1408.6070, arXiv.org, revised Aug 2015.
- Zeng, Yan & Li, Zhongfei & Lai, Yongzeng, 2013. "Time-consistent investment and reinsurance strategies for mean–variance insurers with jumps," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 498-507.
- Yao, Haixiang & Yang, Zhou & Chen, Ping, 2013. "Markowitz’s mean–variance defined contribution pension fund management under inflation: A continuous-time model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 851-863.
- Gao, Jianjun & Xiong, Yan & Li, Duan, 2016. "Dynamic mean-risk portfolio selection with multiple risk measures in continuous-time," European Journal of Operational Research, Elsevier, vol. 249(2), pages 647-656.
- Li, Yongwu & Qiao, Han & Wang, Shouyang & Zhang, Ling, 2015. "Time-consistent investment strategy under partial information," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 187-197.
- Sun, Jingyun & Li, Zhongfei & Zeng, Yan, 2016. "Precommitment and equilibrium investment strategies for defined contribution pension plans under a jump–diffusion model," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 158-172.
- Strub, Moris S. & Li, Duan & Cui, Xiangyu & Gao, Jianjun, 2019. "Discrete-time mean-CVaR portfolio selection and time-consistency induced term structure of the CVaR," Journal of Economic Dynamics and Control, Elsevier, vol. 108(C).
- Elena Vigna, 2009. "Mean-variance inefficiency of CRRA and CARA utility functions for portfolio selection in defined contribution pension schemes," CeRP Working Papers 89, Center for Research on Pensions and Welfare Policies, Turin (Italy).
- Xiangyu Cui & Xun Li & Duan Li & Yun Shi, 2017. "Time consistent behavioral portfolio policy for dynamic mean–variance formulation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(12), pages 1647-1660, December.
- Van Staden, Pieter M. & Dang, Duy-Minh & Forsyth, Peter A., 2018. "Time-consistent mean–variance portfolio optimization: A numerical impulse control approach," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 9-28.
More about this item
Keywords
Dynamic portfolio management; Mean–variance optimization; Constrained optimization; Simulation method; Least squares regression;All these keywords.
JEL classification:
- C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
- C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
- G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:64:y:2016:i:c:p:23-38. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jedc .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.