IDEAS home Printed from https://ideas.repec.org/a/spr/comgts/v8y2011i1p3-22.html
   My bibliography  Save this article

Mean-variance versus expected utility in dynamic investment analysis

Author

Listed:
  • Leonard MacLean
  • Yonggan Zhao
  • William Ziemba

Abstract

No abstract is available for this item.

Suggested Citation

  • Leonard MacLean & Yonggan Zhao & William Ziemba, 2011. "Mean-variance versus expected utility in dynamic investment analysis," Computational Management Science, Springer, vol. 8(1), pages 3-22, April.
  • Handle: RePEc:spr:comgts:v:8:y:2011:i:1:p:3-22
    DOI: 10.1007/s10287-009-0106-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10287-009-0106-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10287-009-0106-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hens, Thorsten & Schenk-Hoppe, Klaus Reiner, 2005. "Evolutionary stability of portfolio rules in incomplete markets," Journal of Mathematical Economics, Elsevier, vol. 41(1-2), pages 43-66, February.
    2. Cox, John C. & Huang, Chi-fu, 1989. "Optimal consumption and portfolio policies when asset prices follow a diffusion process," Journal of Economic Theory, Elsevier, vol. 49(1), pages 33-83, October.
    3. Samuelson, Paul A., 1967. "General Proof that Diversification Pays*," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 2(1), pages 1-13, March.
    4. Kroll, Yoram & Levy, Haim & Markowitz, Harry M, 1984. "Mean-Variance versus Direct Utility Maximization," Journal of Finance, American Finance Association, vol. 39(1), pages 47-61, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Johnstone, 2002. "Behavioral and Prescriptive Explanations of a Reverse Sunk Cost Effect," Theory and Decision, Springer, vol. 53(3), pages 209-242, November.
    2. Michael W. Brandt & Amit Goyal & Pedro Santa-Clara & Jonathan R. Stroud, 2005. "A Simulation Approach to Dynamic Portfolio Choice with an Application to Learning About Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 18(3), pages 831-873.
    3. Shihao Zhu & Jingtao Shi, 2019. "Optimal Reinsurance and Investment Strategies under Mean-Variance Criteria: Partial and Full Information," Papers 1906.08410, arXiv.org, revised Jun 2020.
    4. Sun, Wan Gui & Wang, Chun Feng, 2006. "The mean-variance investment problem in a constrained financial market," Journal of Mathematical Economics, Elsevier, vol. 42(7-8), pages 885-895, November.
    5. Zhang, Jingong & Tan, Ken Seng & Weng, Chengguo, 2017. "Optimal hedging with basis risk under mean–variance criterion," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 1-15.
    6. D. Johnstone, 2007. "The Value of a Probability Forecast from Portfolio Theory," Theory and Decision, Springer, vol. 63(2), pages 153-203, September.
    7. Suleyman Basak & Georgy Chabakauri, 2010. "Dynamic Mean-Variance Asset Allocation," The Review of Financial Studies, Society for Financial Studies, vol. 23(8), pages 2970-3016, August.
    8. Ben-Zhang Yang & Xin-Jiang He & Song-Ping Zhu, 2020. "Continuous time mean-variance-utility portfolio problem and its equilibrium strategy," Papers 2005.06782, arXiv.org, revised Nov 2020.
    9. Ben-Zhang Yang & Xin-Jiang He & Song-Ping Zhu, 2020. "Mean-variance-utility portfolio selection with time and state dependent risk aversion," Papers 2007.06510, arXiv.org, revised Aug 2020.
    10. Tomasz R. Bielecki & Hanqing Jin & Stanley R. Pliska & Xun Yu Zhou, 2005. "Continuous‐Time Mean‐Variance Portfolio Selection With Bankruptcy Prohibition," Mathematical Finance, Wiley Blackwell, vol. 15(2), pages 213-244, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tasca, Paolo & Mavrodiev, Pavlin & Schweitzer, Frank, 2014. "Quantifying the impact of leveraging and diversification on systemic risk," Journal of Financial Stability, Elsevier, vol. 15(C), pages 43-52.
    2. Michael W. Brandt & Amit Goyal & Pedro Santa-Clara & Jonathan R. Stroud, 2005. "A Simulation Approach to Dynamic Portfolio Choice with an Application to Learning About Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 18(3), pages 831-873.
    3. Penaranda, Francisco, 2007. "Portfolio choice beyond the traditional approach," LSE Research Online Documents on Economics 24481, London School of Economics and Political Science, LSE Library.
    4. Alexandros Kostakis & Nikolaos Panigirtzoglou & George Skiadopoulos, 2011. "Market Timing with Option-Implied Distributions: A Forward-Looking Approach," Management Science, INFORMS, vol. 57(7), pages 1231-1249, July.
    5. Cochran, Mark J., 1986. "Stochastic Dominance: The State Of The Art In Agricultural Economics," Regional Research Projects > 1986: S-180 Annual Meeting, March 23-26, 1986, Tampa, Florida 271995, Regional Research Projects > S-180: An Economic Analysis of Risk Management Strategies for Agricultural Production Firms.
    6. Tobias Adrian & Nina Boyarchenko, 2013. "Intermediary balance sheets," Staff Reports 651, Federal Reserve Bank of New York.
    7. Auffret, Philippe, 2001. "An alternative unifying measure of welfare gains from risk-sharing," Policy Research Working Paper Series 2676, The World Bank.
    8. Jun Liu, 2004. "Losing Money on Arbitrage: Optimal Dynamic Portfolio Choice in Markets with Arbitrage Opportunities," The Review of Financial Studies, Society for Financial Studies, vol. 17(3), pages 611-641.
    9. Raffestin, Louis, 2014. "Diversification and systemic risk," Journal of Banking & Finance, Elsevier, vol. 46(C), pages 85-106.
    10. Jan Fałkowski & Maciej Jakubowski & Paweł Strawiński, 2014. "Returns from income strategies in rural Poland," The Economics of Transition, The European Bank for Reconstruction and Development, vol. 22(1), pages 139-178, January.
    11. Chai, Naijie & Zhou, Wenliang & Hu, Xinlei, 2022. "Safety evaluation of urban rail transit operation considering uncertainty and risk preference: A case study in China," Transport Policy, Elsevier, vol. 125(C), pages 267-288.
    12. Markowitz, Harry, 2014. "Mean–variance approximations to expected utility," European Journal of Operational Research, Elsevier, vol. 234(2), pages 346-355.
    13. Wojtek Michalowski & Włodzimierz Ogryczak, 2001. "Extending the MAD portfolio optimization model to incorporate downside risk aversion," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(3), pages 185-200, April.
    14. Christian Gollier & James Hammitt & Nicolas Treich, 2013. "Risk and choice: A research saga," Journal of Risk and Uncertainty, Springer, vol. 47(2), pages 129-145, October.
    15. Dong, Yinghui & Zheng, Harry, 2019. "Optimal investment of DC pension plan under short-selling constraints and portfolio insurance," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 47-59.
    16. Zeckhauser, Richard Jay & Tran, Ngoc-Khanh, 2011. "The Behavior of Savings and Asset Prices When Preferences and Beliefs are Heterogeneous," Scholarly Articles 5027955, Harvard Kennedy School of Government.
    17. Bank, Peter & Riedel, Frank, 1999. "Optimal consumption choice under uncertainty with intertemporal substitution," SFB 373 Discussion Papers 1999,71, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    18. Hong‐Chih Huang, 2010. "Optimal Multiperiod Asset Allocation: Matching Assets to Liabilities in a Discrete Model," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 77(2), pages 451-472, June.
    19. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    20. Aleksandr G. Alekseev & Mikhail V. Sokolov, 2016. "Benchmark-based evaluation of portfolio performance: a characterization," Annals of Finance, Springer, vol. 12(3), pages 409-440, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:8:y:2011:i:1:p:3-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.