IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v21y2021i2d10.1007_s12351-019-00482-4.html
   My bibliography  Save this article

Multi-period mean–variance portfolio optimization with management fees

Author

Listed:
  • Xiangyu Cui

    (Shanghai University of Finance and Economics)

  • Jianjun Gao

    (Shanghai University of Finance and Economics)

  • Yun Shi

    (East China Normal University)

Abstract

Due to limited capital and limited information from stock market, some individual investors prefer to construct a portfolio of funds instead of stocks. But, there will be management fees paid to the fund managers during the investment, which are in general proportional to the net asset value of the funds. Motivated by this phenomena, this paper considers multi-period mean–variance portfolio optimization problem with proportional management fees. Using stochastic dynamic programming, we derive the semi-analytical optimal portfolio policy. Our result helps clarify the benefit and cost of adopting such dynamic portfolio policy with management fees.

Suggested Citation

  • Xiangyu Cui & Jianjun Gao & Yun Shi, 2021. "Multi-period mean–variance portfolio optimization with management fees," Operational Research, Springer, vol. 21(2), pages 1333-1354, June.
  • Handle: RePEc:spr:operea:v:21:y:2021:i:2:d:10.1007_s12351-019-00482-4
    DOI: 10.1007/s12351-019-00482-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-019-00482-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-019-00482-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cvitanic, Jaksa & Lazrak, Ali & Wang, Tan, 2008. "Implications of the Sharpe ratio as a performance measure in multi-period settings," Journal of Economic Dynamics and Control, Elsevier, vol. 32(5), pages 1622-1649, May.
    2. U. Çakmak & S. Özekici, 2006. "Portfolio optimization in stochastic markets," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 63(1), pages 151-168, February.
    3. Stephen J. Brown & William N. Goetzmann & Bing Liang, 2005. "Fees On Fees In Funds Of Funds," World Scientific Book Chapters, in: H Gifford Fong (ed.), The World Of Hedge Funds Characteristics and Analysis, chapter 7, pages 141-160, World Scientific Publishing Co. Pte. Ltd..
    4. Sato, Yuki, 2016. "Delegated portfolio management, optimal fee contracts, and asset prices," Journal of Economic Theory, Elsevier, vol. 165(C), pages 360-389.
    5. Nicolae Gârleanu & Lasse Heje Pedersen, 2013. "Dynamic Trading with Predictable Returns and Transaction Costs," Journal of Finance, American Finance Association, vol. 68(6), pages 2309-2340, December.
    6. Cui, Xiangyu & Gao, Jianjun & Li, Xun & Li, Duan, 2014. "Optimal multi-period mean–variance policy under no-shorting constraint," European Journal of Operational Research, Elsevier, vol. 234(2), pages 459-468.
    7. Lynch, Anthony W. & Tan, Sinan, 2010. "Multiple Risky Assets, Transaction Costs, and Return Predictability: Allocation Rules and Implications for U.S. Investors," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 45(4), pages 1015-1053, August.
    8. Chun Hung Chiu & Xun Yu Zhou, 2011. "The premium of dynamic trading," Quantitative Finance, Taylor & Francis Journals, vol. 11(1), pages 115-123.
    9. K. Pendaraki & C. Zopounidis, 2003. "Evaluation Of Equity Mutual Funds’ Performance Using A Multicriteria Methodology," European Research Studies Journal, European Research Studies Journal, vol. 0(3-4), pages 143-162, July - De.
    10. Ledoit, Olivier & Wolf, Michael, 2003. "Improved estimation of the covariance matrix of stock returns with an application to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 603-621, December.
    11. Yu, Jing-Rung & Lee, Wen-Yi, 2011. "Portfolio rebalancing model using multiple criteria," European Journal of Operational Research, Elsevier, vol. 209(2), pages 166-175, March.
    12. Xiangyu Cui & Duan Li & Xun Li, 2017. "Mean-Variance Policy For Discrete-Time Cone-Constrained Markets: Time Consistency In Efficiency And The Minimum-Variance Signed Supermartingale Measure," Mathematical Finance, Wiley Blackwell, vol. 27(2), pages 471-504, April.
    13. Duan Li & Wan‐Lung Ng, 2000. "Optimal Dynamic Portfolio Selection: Multiperiod Mean‐Variance Formulation," Mathematical Finance, Wiley Blackwell, vol. 10(3), pages 387-406, July.
    14. C. Wei Li & Ashish Tiwari, 2009. "Incentive Contracts in Delegated Portfolio Management," The Review of Financial Studies, Society for Financial Studies, vol. 22(11), pages 4681-4714, November.
    15. Meucci, A. & Nicolosi, M., 2016. "Dynamic portfolio management with views at multiple horizons," Applied Mathematics and Computation, Elsevier, vol. 274(C), pages 495-518.
    16. Dokuchaev, Nikolai, 2010. "Optimality of myopic strategies for multi-stock discrete time market with management costs," European Journal of Operational Research, Elsevier, vol. 200(2), pages 551-556, January.
    17. Yuanyuan Zhang & Xiang Li & Sini Guo, 2018. "Portfolio selection problems with Markowitz’s mean–variance framework: a review of literature," Fuzzy Optimization and Decision Making, Springer, vol. 17(2), pages 125-158, June.
    18. Hui Ou-Yang, 2003. "Optimal Contracts in a Continuous-Time Delegated Portfolio Management Problem," The Review of Financial Studies, Society for Financial Studies, vol. 16(1), pages 173-208.
    19. Tomasz R. Bielecki & Hanqing Jin & Stanley R. Pliska & Xun Yu Zhou, 2005. "Continuous‐Time Mean‐Variance Portfolio Selection With Bankruptcy Prohibition," Mathematical Finance, Wiley Blackwell, vol. 15(2), pages 213-244, April.
    20. Livio Stracca, 2006. "Delegated Portfolio Management: A Survey Of The Theoretical Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 20(5), pages 823-848, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Strub, Moris S. & Li, Duan & Cui, Xiangyu & Gao, Jianjun, 2019. "Discrete-time mean-CVaR portfolio selection and time-consistency induced term structure of the CVaR," Journal of Economic Dynamics and Control, Elsevier, vol. 108(C).
    2. Yuanyuan Zhang & Xiang Li & Sini Guo, 2018. "Portfolio selection problems with Markowitz’s mean–variance framework: a review of literature," Fuzzy Optimization and Decision Making, Springer, vol. 17(2), pages 125-158, June.
    3. Ling, Aifan & Sun, Jie & Wang, Meihua, 2020. "Robust multi-period portfolio selection based on downside risk with asymmetrically distributed uncertainty set," European Journal of Operational Research, Elsevier, vol. 285(1), pages 81-95.
    4. Cvitanic, Jaksa & Lazrak, Ali & Wang, Tan, 2008. "Implications of the Sharpe ratio as a performance measure in multi-period settings," Journal of Economic Dynamics and Control, Elsevier, vol. 32(5), pages 1622-1649, May.
    5. Ben-Zhang Yang & Xin-Jiang He & Song-Ping Zhu, 2020. "Continuous time mean-variance-utility portfolio problem and its equilibrium strategy," Papers 2005.06782, arXiv.org, revised Nov 2020.
    6. Han, Min-Yeon & Jun, Sang-Gyung & Oh, Ji Yeol Jimmy & Kang, Hyoung-Goo, 2023. "Who should choose the money managers? Institutional sponsors' equity manager performance," Pacific-Basin Finance Journal, Elsevier, vol. 78(C).
    7. Yao, Haixiang & Li, Danping & Wu, Huiling, 2022. "Dynamic trading with uncertain exit time and transaction costs in a general Markov market," International Review of Financial Analysis, Elsevier, vol. 84(C).
    8. Andrea M. Buffa & Dimitri Vayanos & Paul Woolley, 2022. "Asset Management Contracts and Equilibrium Prices," Journal of Political Economy, University of Chicago Press, vol. 130(12), pages 3146-3201.
    9. Suleyman Basak & Georgy Chabakauri, 2010. "Dynamic Mean-Variance Asset Allocation," The Review of Financial Studies, Society for Financial Studies, vol. 23(8), pages 2970-3016, August.
    10. Ben-Zhang Yang & Xin-Jiang He & Song-Ping Zhu, 2020. "Mean-variance-utility portfolio selection with time and state dependent risk aversion," Papers 2007.06510, arXiv.org, revised Aug 2020.
    11. Rongju Zhang & Nicolas Langren'e & Yu Tian & Zili Zhu & Fima Klebaner & Kais Hamza, 2016. "Dynamic portfolio optimization with liquidity cost and market impact: a simulation-and-regression approach," Papers 1610.07694, arXiv.org, revised Jun 2019.
    12. Cuoco, Domenico & Kaniel, Ron, 2011. "Equilibrium prices in the presence of delegated portfolio management," Journal of Financial Economics, Elsevier, vol. 101(2), pages 264-296, August.
    13. Cong, F. & Oosterlee, C.W., 2016. "On pre-commitment aspects of a time-consistent strategy for a mean-variance investor," Journal of Economic Dynamics and Control, Elsevier, vol. 70(C), pages 178-193.
    14. Xin Huang & Duan Li & Daniel Zhuoyu Long, 2020. "Scenario-decomposition Solution Framework for Nonseparable Stochastic Control Problems," Papers 2010.08985, arXiv.org.
    15. Hautsch, Nikolaus & Voigt, Stefan, 2019. "Large-scale portfolio allocation under transaction costs and model uncertainty," Journal of Econometrics, Elsevier, vol. 212(1), pages 221-240.
    16. Xiangyu Cui & Duan Li & Xun Li, 2014. "Mean-Variance Policy for Discrete-time Cone Constrained Markets: The Consistency in Efficiency and Minimum-Variance Signed Supermartingale Measure," Papers 1403.0718, arXiv.org.
    17. Cong, F. & Oosterlee, C.W., 2016. "Multi-period mean–variance portfolio optimization based on Monte-Carlo simulation," Journal of Economic Dynamics and Control, Elsevier, vol. 64(C), pages 23-38.
    18. Chen, Zhiping & Li, Gang & Zhao, Yonggan, 2014. "Time-consistent investment policies in Markovian markets: A case of mean–variance analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 40(C), pages 293-316.
    19. Gao, Jianjun & Xiong, Yan & Li, Duan, 2016. "Dynamic mean-risk portfolio selection with multiple risk measures in continuous-time," European Journal of Operational Research, Elsevier, vol. 249(2), pages 647-656.
    20. Min Dai & Hanqing Jin & Steven Kou & Yuhong Xu, 2021. "A Dynamic Mean-Variance Analysis for Log Returns," Management Science, INFORMS, vol. 67(2), pages 1093-1108, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:21:y:2021:i:2:d:10.1007_s12351-019-00482-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.