IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v32y2012i11p1856-1872.html
   My bibliography  Save this article

Roy’s Safety‐First Portfolio Principle in Financial Risk Management of Disastrous Events

Author

Listed:
  • Mei Choi Chiu
  • Hoi Ying Wong
  • Duan Li

Abstract

Roy pioneers the concept and practice of risk management of disastrous events via his safety‐first principle for portfolio selection. More specifically, his safety‐first principle advocates an optimal portfolio strategy generated from minimizing the disaster probability, while subject to the budget constraint and the mean constraint that the expected final wealth is not less than a preselected disaster level. This article studies the dynamic safety‐first principle in continuous time and its application in asset and liability management. We reveal that the distortion resulting from dropping the mean constraint, as a common practice to approximate the original Roy’s setting, either leads to a trivial case or changes the problem nature completely to a target‐reaching problem, which produces a highly leveraged trading strategy. Recognizing the ill‐posed nature of the corresponding Lagrangian method when retaining the mean constraint, we invoke a wisdom observed from a limited funding‐level regulation of pension funds and modify the original safety‐first formulation accordingly by imposing an upper bound on the funding level. This model revision enables us to solve completely the safety‐first asset‐liability problem by a martingale approach and to derive an optimal policy that follows faithfully the spirit of the safety‐first principle and demonstrates a prominent nature of fighting for the best and preventing disaster from happening.

Suggested Citation

  • Mei Choi Chiu & Hoi Ying Wong & Duan Li, 2012. "Roy’s Safety‐First Portfolio Principle in Financial Risk Management of Disastrous Events," Risk Analysis, John Wiley & Sons, vol. 32(11), pages 1856-1872, November.
  • Handle: RePEc:wly:riskan:v:32:y:2012:i:11:p:1856-1872
    DOI: 10.1111/j.1539-6924.2011.01751.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6924.2011.01751.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6924.2011.01751.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Brennan, M.J. & Solanki, R., 1981. "Optimal Portfolio Insurance," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 16(3), pages 279-300, September.
    2. Phelim Boyle & Weidong Tian, 2007. "Portfolio Management With Constraints," Mathematical Finance, Wiley Blackwell, vol. 17(3), pages 319-343, July.
    3. Bawa, Vijay S, 1976. "Admissible Portfolios for All Individuals," Journal of Finance, American Finance Association, vol. 31(4), pages 1169-1183, September.
    4. Basak, Suleyman & Shapiro, Alexander, 2001. "Value-at-Risk-Based Risk Management: Optimal Policies and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 14(2), pages 371-405.
    5. Suleyman Basak & Alexander Shapiro, 2005. "A Model of Credit Risk, Optimal Policies, and Asset Prices," The Journal of Business, University of Chicago Press, vol. 78(4), pages 1215-1266, July.
    6. Leippold, Markus & Trojani, Fabio & Vanini, Paolo, 2004. "A geometric approach to multiperiod mean variance optimization of assets and liabilities," Journal of Economic Dynamics and Control, Elsevier, vol. 28(6), pages 1079-1113, March.
    7. Duan Li & Wan‐Lung Ng, 2000. "Optimal Dynamic Portfolio Selection: Multiperiod Mean‐Variance Formulation," Mathematical Finance, Wiley Blackwell, vol. 10(3), pages 387-406, July.
    8. Stanley R. Pliska, 1986. "A Stochastic Calculus Model of Continuous Trading: Optimal Portfolios," Mathematics of Operations Research, INFORMS, vol. 11(2), pages 371-382, May.
    9. Grossman, Sanford J & Zhou, Zhongquan, 1996. "Equilibrium Analysis of Portfolio Insurance," Journal of Finance, American Finance Association, vol. 51(4), pages 1379-1403, September.
    10. Keel, Alex & Müller, Heinz H., 1995. "Efficient Portfolios in the Asset Liability Context," ASTIN Bulletin, Cambridge University Press, vol. 25(1), pages 33-48, May.
    11. Tomasz R. Bielecki & Hanqing Jin & Stanley R. Pliska & Xun Yu Zhou, 2005. "Continuous‐Time Mean‐Variance Portfolio Selection With Bankruptcy Prohibition," Mathematical Finance, Wiley Blackwell, vol. 15(2), pages 213-244, April.
    12. Basak, Suleyman, 1995. "A General Equilibrium Model of Portfolio Insurance," The Review of Financial Studies, Society for Financial Studies, vol. 8(4), pages 1059-1090.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ke Zhou & Jiangjun Gao & Duan Li & Xiangyu Cui, 2017. "Dynamic mean–VaR portfolio selection in continuous time," Quantitative Finance, Taylor & Francis Journals, vol. 17(10), pages 1631-1643, October.
    2. Weiping Wu & Yu Lin & Jianjun Gao & Ke Zhou, 2023. "Mean-variance hybrid portfolio optimization with quantile-based risk measure," Papers 2303.15830, arXiv.org, revised Apr 2023.
    3. Li, Yan & Mi, Hui, 2021. "Portfolio optimization under safety first expected utility with nonlinear probability distortion," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    4. Chiu, Mei Choi & Wong, Hoi Ying & Zhao, Jing, 2018. "Dynamic safety first expected utility model," European Journal of Operational Research, Elsevier, vol. 271(1), pages 141-154.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boyle, Phelim & Tian, Weidong, 2008. "The design of equity-indexed annuities," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 303-315, December.
    2. Gao, Jianjun & Xiong, Yan & Li, Duan, 2016. "Dynamic mean-risk portfolio selection with multiple risk measures in continuous-time," European Journal of Operational Research, Elsevier, vol. 249(2), pages 647-656.
    3. Marcos Escobar-Anel & Yevhen Havrylenko & Rudi Zagst, 2022. "Value-at-Risk constrained portfolios in incomplete markets: a dynamic programming approach to Heston's model," Papers 2208.14152, arXiv.org, revised Jul 2024.
    4. Chen, An & Nguyen, Thai & Stadje, Mitja, 2018. "Optimal investment under VaR-Regulation and Minimum Insurance," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 194-209.
    5. Dong, Yinghui & Zheng, Harry, 2020. "Optimal investment with S-shaped utility and trading and Value at Risk constraints: An application to defined contribution pension plan," European Journal of Operational Research, Elsevier, vol. 281(2), pages 341-356.
    6. Joel M. Vanden, 2006. "Portfolio Insurance And Volatility Regime Switching," Mathematical Finance, Wiley Blackwell, vol. 16(2), pages 387-417, April.
    7. Bertrand, Philippe & Prigent, Jean-luc, 2016. "Equilibrium of financial derivative markets under portfolio insurance constraints," Economic Modelling, Elsevier, vol. 52(PA), pages 278-291.
    8. Carole Bernard & Franck Moraux & Ludger R�schendorf & Steven Vanduffel, 2015. "Optimal payoffs under state-dependent preferences," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1157-1173, July.
    9. Marcos Escobar-Anel, 2022. "A dynamic programming approach to path-dependent constrained portfolios," Annals of Operations Research, Springer, vol. 315(1), pages 141-157, August.
    10. Danielsson, Jon & Shin, Hyun Song & Zigrand, Jean-Pierre, 2004. "The impact of risk regulation on price dynamics," Journal of Banking & Finance, Elsevier, vol. 28(5), pages 1069-1087, May.
    11. Kamma, Thijs & Pelsser, Antoon, 2022. "Near-optimal asset allocation in financial markets with trading constraints," European Journal of Operational Research, Elsevier, vol. 297(2), pages 766-781.
    12. Wan-Kai Pang & Yuan-Hua Ni & Xun Li & Ka-Fai Cedric Yiu, 2013. "Continuous-time Mean-Variance Portfolio Selection with Stochastic Parameters," Papers 1302.6669, arXiv.org.
    13. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    14. Yacine AÏT‐SAHALI & Michael W. Brandt, 2001. "Variable Selection for Portfolio Choice," Journal of Finance, American Finance Association, vol. 56(4), pages 1297-1351, August.
    15. M. C. Chiu & D. Li, 2009. "Asset-Liability Management Under the Safety-First Principle," Journal of Optimization Theory and Applications, Springer, vol. 143(3), pages 455-478, December.
    16. Ben-Zhang Yang & Xin-Jiang He & Song-Ping Zhu, 2020. "Continuous time mean-variance-utility portfolio problem and its equilibrium strategy," Papers 2005.06782, arXiv.org, revised Nov 2020.
    17. Jón Daníelsson & Jean-Pierre Zigrand, 2008. "Equilibrium asset pricing with systemic risk," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 35(2), pages 293-319, May.
    18. Dangl, Thomas & Randl, Otto & Zechner, Josef, 2016. "Risk control in asset management: Motives and concepts," CFS Working Paper Series 546, Center for Financial Studies (CFS).
    19. Suleyman Basak & Alex Shapiro & Lucie Teplá, 2006. "Risk Management with Benchmarking," Management Science, INFORMS, vol. 52(4), pages 542-557, April.
    20. Bertrand, Philippe & Prigent, Jean-luc, 2011. "Omega performance measure and portfolio insurance," Journal of Banking & Finance, Elsevier, vol. 35(7), pages 1811-1823, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:32:y:2012:i:11:p:1856-1872. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.