A machine learning approach to portfolio pricing and risk management for high-dimensional problems
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
- Carriere, Jacques F., 1996. "Valuation of the early-exercise price for options using simulations and nonparametric regression," Insurance: Mathematics and Economics, Elsevier, vol. 19(1), pages 19-30, December.
- Dilip B. Madan & Frank Milne, 1994.
"Contingent Claims Valued And Hedged By Pricing And Investing In A Basis,"
Mathematical Finance, Wiley Blackwell, vol. 4(3), pages 223-245, July.
- Dilip B. Madan & Frank Milne, 1994. "Contingent Claims Valued And Hedged By Pricing And Investing In A Basis," Working Paper 1158, Economics Department, Queen's University.
- Mark Broadie & Yiping Du & Ciamac C. Moallemi, 2015. "Risk Estimation via Regression," Operations Research, INFORMS, vol. 63(5), pages 1077-1097, October.
- Carter, Lawrence R. & Lee, Ronald D., 1992. "Modeling and forecasting US sex differentials in mortality," International Journal of Forecasting, Elsevier, vol. 8(3), pages 393-411, November.
- Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Aur'elien Alfonsi & Adel Cherchali & Jose Arturo Infante Acevedo, 2020. "Multilevel Monte-Carlo for computing the SCR with the standard formula and other stress tests," Papers 2010.12651, arXiv.org, revised Apr 2021.
- Yuji Shinozaki, 2024. "A Review of New Developments in Finance with Deep Learning: Deep Hedging and Deep Calibration," IMES Discussion Paper Series 24-E-02, Institute for Monetary and Economic Studies, Bank of Japan.
- Laurens Van Mieghem & Antonis Papapantoleon & Jonas Papazoglou-Hennig, 2023. "Machine learning for option pricing: an empirical investigation of network architectures," Papers 2307.07657, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lucio Fernandez‐Arjona & Damir Filipović, 2022. "A machine learning approach to portfolio pricing and risk management for high‐dimensional problems," Mathematical Finance, Wiley Blackwell, vol. 32(4), pages 982-1019, October.
- Ludkovski, Michael & Young, Virginia R., 2008. "Indifference pricing of pure endowments and life annuities under stochastic hazard and interest rates," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 14-30, February.
- Kun Zhang & Ben Mingbin Feng & Guangwu Liu & Shiyu Wang, 2022. "Sample Recycling for Nested Simulation with Application in Portfolio Risk Measurement," Papers 2203.15929, arXiv.org.
- Patrick Cheridito & John Ery & Mario V. Wüthrich, 2020. "Assessing Asset-Liability Risk with Neural Networks," Risks, MDPI, vol. 8(1), pages 1-17, February.
- M. Martin Boyer & Lars Stentoft, 2017. "Yes We Can (Price Derivatives on Survivor Indices)," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 20(1), pages 37-62, March.
- Boyer, M. Martin & Stentoft, Lars, 2013.
"If we can simulate it, we can insure it: An application to longevity risk management,"
Insurance: Mathematics and Economics, Elsevier, vol. 52(1), pages 35-45.
- M. Martin Boyer & Lars Stentoft, 2012. "If we can simulate it, we can insure it: An application to longevity risk management," CIRANO Working Papers 2012s-08, CIRANO.
- Hongjun Ha & Daniel Bauer, 2022. "A least-squares Monte Carlo approach to the estimation of enterprise risk," Finance and Stochastics, Springer, vol. 26(3), pages 417-459, July.
- Patrick Cheridito & John Ery & Mario V. Wuthrich, 2021. "Assessing asset-liability risk with neural networks," Papers 2105.12432, arXiv.org.
- L. Jeff Hong & Sandeep Juneja & Guangwu Liu, 2017. "Kernel Smoothing for Nested Estimation with Application to Portfolio Risk Measurement," Operations Research, INFORMS, vol. 65(3), pages 657-673, June.
- Tebaldi, Claudio, 2005.
"Hedging using simulation: a least squares approach,"
Journal of Economic Dynamics and Control, Elsevier, vol. 29(8), pages 1287-1312, August.
- Claudio Tebaldi, 2002. "Hedging using simulation: a least squares approach," Computing in Economics and Finance 2002 279, Society for Computational Economics.
- Feng, Ben Mingbin & Li, Johnny Siu-Hang & Zhou, Kenneth Q., 2022. "Green nested simulation via likelihood ratio: Applications to longevity risk management," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 285-301.
- Stentoft, Lars, 2005. "Pricing American options when the underlying asset follows GARCH processes," Journal of Empirical Finance, Elsevier, vol. 12(4), pages 576-611, September.
- Hári, Norbert & De Waegenaere, Anja & Melenberg, Bertrand & Nijman, Theo E., 2008. "Longevity risk in portfolios of pension annuities," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 505-519, April.
- repec:hum:wpaper:sfb649dp2006-051 is not listed on IDEAS
- Alessandro Gnoatto & Athena Picarelli & Christoph Reisinger, 2020.
"Deep xVA solver -- A neural network based counterparty credit risk management framework,"
Papers
2005.02633, arXiv.org, revised Dec 2022.
- Alessandro Gnoatto & Athena Picarelli & Christoph Reisinger, 2020. "Deep xVA solver - A neural network based counterparty credit risk management framework," Working Papers 07/2020, University of Verona, Department of Economics.
- Calypso Herrera & Florian Krach & Pierre Ruyssen & Josef Teichmann, 2021. "Optimal Stopping via Randomized Neural Networks," Papers 2104.13669, arXiv.org, revised Dec 2023.
- Denis Belomestny & Grigori Milstein & Vladimir Spokoiny, 2009.
"Regression methods in pricing American and Bermudan options using consumption processes,"
Quantitative Finance, Taylor & Francis Journals, vol. 9(3), pages 315-327.
- Belomestny, Denis & Milstein, Grigori N. & Spokoiny, Vladimir, 2006. "Regression methods in pricing American and Bermudan options using consumption processes," SFB 649 Discussion Papers 2006-051, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Rongju Zhang & Nicolas Langren'e & Yu Tian & Zili Zhu & Fima Klebaner & Kais Hamza, 2018. "Local Control Regression: Improving the Least Squares Monte Carlo Method for Portfolio Optimization," Papers 1803.11467, arXiv.org, revised Sep 2018.
- Mingbin Ben Feng & Eunhye Song, 2020. "Efficient Nested Simulation Experiment Design via the Likelihood Ratio Method," Papers 2008.13087, arXiv.org, revised May 2024.
- Gilles Pag`es & Benedikt Wilbertz, 2011. "GPGPUs in computational finance: Massive parallel computing for American style options," Papers 1101.3228, arXiv.org.
- Nicholas Davey & Nicolas Langrené & Wen Chen & Jonathan R. Rhodes & Simon Dunstall & Saman Halgamuge, 2023. "Designing higher value roads to preserve species at risk by optimally controlling traffic flow," Annals of Operations Research, Springer, vol. 320(2), pages 663-693, January.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2020-05-11 (Big Data)
- NEP-CMP-2020-05-11 (Computational Economics)
- NEP-GEN-2020-05-11 (Gender)
- NEP-RMG-2020-05-11 (Risk Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2004.14149. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.