Ascertaining price formation in cryptocurrency markets with DeepLearning
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Toke, Ioane Muni & Pomponio, Fabrizio, 2012. "Modelling trades-through in a limit order book using hawkes processes," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 6, pages 1-23.
- Justin Sirignano & Rama Cont, 2018. "Universal features of price formation in financial markets: perspectives from Deep Learning," Papers 1803.06917, arXiv.org.
- Alec N. Kercheval & Yuan Zhang, 2015. "Modelling high-frequency limit order book dynamics with support vector machines," Quantitative Finance, Taylor & Francis Journals, vol. 15(8), pages 1315-1329, August.
- Biais, Bruno & Hillion, Pierre & Spatt, Chester, 1995. "An Empirical Analysis of the Limit Order Book and the Order Flow in the Paris Bourse," Journal of Finance, American Finance Association, vol. 50(5), pages 1655-1689, December.
- Frank Kelly & Elena Yudovina, 2015. "A Markov model of a limit order book: thresholds, recurrence, and trading strategies," Papers 1504.00579, arXiv.org, revised Mar 2017.
- Justin Sirignano & Rama Cont, 2018. "Universal features of price formation in financial markets: perspectives from Deep Learning," Working Papers hal-01754054, HAL.
- Frédéric Abergel & Aymen Jedidi, 2015. "Long-Time Behavior of a Hawkes Process--Based Limit Order Book," Post-Print hal-01121711, HAL.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Nikolaos A. Kyriazis, 2021. "Investigating the diversifying or hedging nexus of cannabis cryptocurrencies with major digital currencies," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 845-861, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Eduard Silantyev, 2019. "Order flow analysis of cryptocurrency markets," Digital Finance, Springer, vol. 1(1), pages 191-218, November.
- Ymir Makinen & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2018. "Forecasting of Jump Arrivals in Stock Prices: New Attention-based Network Architecture using Limit Order Book Data," Papers 1810.10845, arXiv.org.
- Zihao Zhang & Stefan Zohren & Stephen Roberts, 2018. "DeepLOB: Deep Convolutional Neural Networks for Limit Order Books," Papers 1808.03668, arXiv.org, revised Jan 2020.
- Ymir Mäkinen & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2019. "Forecasting jump arrivals in stock prices: new attention-based network architecture using limit order book data," Quantitative Finance, Taylor & Francis Journals, vol. 19(12), pages 2033-2050, December.
- Adamantios Ntakaris & Giorgio Mirone & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2019. "Feature Engineering for Mid-Price Prediction with Deep Learning," Papers 1904.05384, arXiv.org, revised Jun 2019.
- Juho Kanniainen & Ye Yue, 2019. "The Arrival of News and Return Jumps in Stock Markets: A Nonparametric Approach," Papers 1901.02691, arXiv.org.
- Ivan Peñaloza & Pablo Padilla, 2022. "A Pricing Method in a Constrained Market with Differential Informational Frameworks," Computational Economics, Springer;Society for Computational Economics, vol. 60(3), pages 1055-1100, October.
- Ioane Muni Toke & Nakahiro Yoshida, 2020. "Marked point processes and intensity ratios for limit order book modeling," Papers 2001.08442, arXiv.org.
- Christa Cuchiero & Wahid Khosrawi & Josef Teichmann, 2020. "A Generative Adversarial Network Approach to Calibration of Local Stochastic Volatility Models," Risks, MDPI, vol. 8(4), pages 1-31, September.
- Omer Berat Sezer & Mehmet Ugur Gudelek & Ahmet Murat Ozbayoglu, 2019. "Financial Time Series Forecasting with Deep Learning : A Systematic Literature Review: 2005-2019," Papers 1911.13288, arXiv.org.
- Takuya Shintate & Lukáš Pichl, 2019. "Trend Prediction Classification for High Frequency Bitcoin Time Series with Deep Learning," JRFM, MDPI, vol. 12(1), pages 1-15, January.
- Qi Zhao, 2020. "A Deep Learning Framework for Predicting Digital Asset Price Movement from Trade-by-trade Data," Papers 2010.07404, arXiv.org.
- Baptiste Barreau & Laurent Carlier & Damien Challet, 2019.
"Deep Prediction of Investor Interest: a Supervised Clustering Approach,"
Papers
1909.05289, arXiv.org, revised Feb 2021.
- Baptiste Barreau & Laurent Carlier & Damien Challet, 2021. "Deep Prediction Of Investor Interest: a Supervised Clustering Approach," Post-Print hal-02276055, HAL.
- Bryan Lim & Stefan Zohren & Stephen Roberts, 2019. "Enhancing Time Series Momentum Strategies Using Deep Neural Networks," Papers 1904.04912, arXiv.org, revised Sep 2020.
- Paul Bilokon & Yitao Qiu, 2023. "Transformers versus LSTMs for electronic trading," Papers 2309.11400, arXiv.org.
- Kieran Wood & Samuel Kessler & Stephen J. Roberts & Stefan Zohren, 2023. "Few-Shot Learning Patterns in Financial Time-Series for Trend-Following Strategies," Papers 2310.10500, arXiv.org, revised Mar 2024.
- Dimitrios Nikolaidis & Michalis Doumpos, 2022. "Credit Scoring with Drift Adaptation Using Local Regions of Competence," SN Operations Research Forum, Springer, vol. 3(4), pages 1-28, December.
- Arthur le Calvez & Dave Cliff, 2018. "Deep Learning can Replicate Adaptive Traders in a Limit-Order-Book Financial Market," Papers 1811.02880, arXiv.org.
- Allison Koenecke & Amita Gajewar, 2019. "Curriculum Learning in Deep Neural Networks for Financial Forecasting," Papers 1904.12887, arXiv.org, revised Jul 2019.
- Hyungjun Park & Min Kyu Sim & Dong Gu Choi, 2019. "An intelligent financial portfolio trading strategy using deep Q-learning," Papers 1907.03665, arXiv.org, revised Nov 2019.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2020-03-16 (Big Data)
- NEP-CMP-2020-03-16 (Computational Economics)
- NEP-FMK-2020-03-16 (Financial Markets)
- NEP-IFN-2020-03-16 (International Finance)
- NEP-PAY-2020-03-16 (Payment Systems and Financial Technology)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2003.00803. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.