IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2010.07404.html
   My bibliography  Save this paper

A Deep Learning Framework for Predicting Digital Asset Price Movement from Trade-by-trade Data

Author

Listed:
  • Qi Zhao

Abstract

This paper presents a deep learning framework based on Long Short-term Memory Network(LSTM) that predicts price movement of cryptocurrencies from trade-by-trade data. The main focus of this study is on predicting short-term price changes in a fixed time horizon from a looking back period. By carefully designing features and detailed searching for best hyper-parameters, the model is trained to achieve high performance on nearly a year of trade-by-trade data. The optimal model delivers stable high performance(over 60% accuracy) on out-of-sample test periods. In a realistic trading simulation setting, the prediction made by the model could be easily monetized. Moreover, this study shows that the LSTM model could extract universal features from trade-by-trade data, as the learned parameters well maintain their high performance on other cryptocurrency instruments that were not included in training data. This study exceeds existing researches in term of the scale and precision of data used, as well as the high prediction accuracy achieved.

Suggested Citation

  • Qi Zhao, 2020. "A Deep Learning Framework for Predicting Digital Asset Price Movement from Trade-by-trade Data," Papers 2010.07404, arXiv.org.
  • Handle: RePEc:arx:papers:2010.07404
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2010.07404
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ferreira, Miguel A. & Santa-Clara, Pedro, 2011. "Forecasting stock market returns: The sum of the parts is more than the whole," Journal of Financial Economics, Elsevier, vol. 100(3), pages 514-537, June.
    2. Justin Sirignano & Rama Cont, 2018. "Universal features of price formation in financial markets: perspectives from Deep Learning," Papers 1803.06917, arXiv.org.
    3. Aniruddha Dutta & Saket Kumar & Meheli Basu, 2019. "A Gated Recurrent Unit Approach to Bitcoin Price Prediction," Papers 1912.11166, arXiv.org.
    4. Bollerslev, Tim & Marrone, James & Xu, Lai & Zhou, Hao, 2014. "Stock Return Predictability and Variance Risk Premia: Statistical Inference and International Evidence," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 49(3), pages 633-661, June.
    5. Wei Bao & Jun Yue & Yulei Rao, 2017. "A deep learning framework for financial time series using stacked autoencoders and long-short term memory," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-24, July.
    6. Justin Sirignano & Rama Cont, 2018. "Universal features of price formation in financial markets: perspectives from Deep Learning," Working Papers hal-01754054, HAL.
    7. Wei, Wang Chun, 2018. "Liquidity and market efficiency in cryptocurrencies," Economics Letters, Elsevier, vol. 168(C), pages 21-24.
    8. Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zihao Zhang & Stefan Zohren & Stephen Roberts, 2018. "DeepLOB: Deep Convolutional Neural Networks for Limit Order Books," Papers 1808.03668, arXiv.org, revised Jan 2020.
    2. Omer Berat Sezer & Mehmet Ugur Gudelek & Ahmet Murat Ozbayoglu, 2019. "Financial Time Series Forecasting with Deep Learning : A Systematic Literature Review: 2005-2019," Papers 1911.13288, arXiv.org.
    3. Paul Bilokon & Yitao Qiu, 2023. "Transformers versus LSTMs for electronic trading," Papers 2309.11400, arXiv.org.
    4. Ahmet Murat Ozbayoglu & Mehmet Ugur Gudelek & Omer Berat Sezer, 2020. "Deep Learning for Financial Applications : A Survey," Papers 2002.05786, arXiv.org.
    5. Bryan Lim & Stefan Zohren & Stephen Roberts, 2019. "Enhancing Time Series Momentum Strategies Using Deep Neural Networks," Papers 1904.04912, arXiv.org, revised Sep 2020.
    6. Hyungjun Park & Min Kyu Sim & Dong Gu Choi, 2019. "An intelligent financial portfolio trading strategy using deep Q-learning," Papers 1907.03665, arXiv.org, revised Nov 2019.
    7. Kieran Wood & Stephen Roberts & Stefan Zohren, 2021. "Slow Momentum with Fast Reversion: A Trading Strategy Using Deep Learning and Changepoint Detection," Papers 2105.13727, arXiv.org, revised Dec 2021.
    8. Ivan Peñaloza & Pablo Padilla, 2022. "A Pricing Method in a Constrained Market with Differential Informational Frameworks," Computational Economics, Springer;Society for Computational Economics, vol. 60(3), pages 1055-1100, October.
    9. José Afonso Faias & Juan Arismendi Zambrano, 2022. "Equity Risk Premium Predictability from Cross-Sectoral Downturns [International asset allocation with regime shifts]," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 12(3), pages 808-842.
    10. Ymir Makinen & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2018. "Forecasting of Jump Arrivals in Stock Prices: New Attention-based Network Architecture using Limit Order Book Data," Papers 1810.10845, arXiv.org.
    11. James Wallbridge, 2020. "Transformers for Limit Order Books," Papers 2003.00130, arXiv.org.
    12. Andreou, Panayiotis C. & Kagkadis, Anastasios & Philip, Dennis & Taamouti, Abderrahim, 2019. "The information content of forward moments," Journal of Banking & Finance, Elsevier, vol. 106(C), pages 527-541.
    13. Flori, Andrea & Regoli, Daniele, 2021. "Revealing Pairs-trading opportunities with long short-term memory networks," European Journal of Operational Research, Elsevier, vol. 295(2), pages 772-791.
    14. Zhaofeng Zhang & Banghao Chen & Shengxin Zhu & Nicolas Langren'e, 2024. "Quantformer: from attention to profit with a quantitative transformer trading strategy," Papers 2404.00424, arXiv.org, revised Oct 2024.
    15. Nosratabadi, Saeed & Mosavi, Amir & Duan, Puhong & Ghamisi, Pedram & Filip, Ferdinand & Band, Shahab S. & Reuter, Uwe & Gama, Joao & Gandomi, Amir H., 2020. "Data science in economics: comprehensive review of advanced machine learning and deep learning methods," LawArXiv kczj5, Center for Open Science.
    16. Ehsan Hoseinzade & Saman Haratizadeh & Arash Khoeini, 2019. "U-CNNpred: A Universal CNN-based Predictor for Stock Markets," Papers 1911.12540, arXiv.org.
    17. Sergio Consoli & Luca Tiozzo Pezzoli & Elisa Tosetti, 2022. "Neural forecasting of the Italian sovereign bond market with economic news," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S2), pages 197-224, December.
    18. Firuz Kamalov, 2019. "Forecasting significant stock price changes using neural networks," Papers 1912.08791, arXiv.org.
    19. Zihao Zhang & Stefan Zohren & Stephen Roberts, 2019. "Deep Reinforcement Learning for Trading," Papers 1911.10107, arXiv.org.
    20. Kim, A. & Yang, Y. & Lessmann, S. & Ma, T. & Sung, M.-C. & Johnson, J.E.V., 2020. "Can deep learning predict risky retail investors? A case study in financial risk behavior forecasting," European Journal of Operational Research, Elsevier, vol. 283(1), pages 217-234.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2010.07404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.