IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1907.03665.html
   My bibliography  Save this paper

An intelligent financial portfolio trading strategy using deep Q-learning

Author

Listed:
  • Hyungjun Park
  • Min Kyu Sim
  • Dong Gu Choi

Abstract

Portfolio traders strive to identify dynamic portfolio allocation schemes so that their total budgets are efficiently allocated through the investment horizon. This study proposes a novel portfolio trading strategy in which an intelligent agent is trained to identify an optimal trading action by using deep Q-learning. We formulate a Markov decision process model for the portfolio trading process, and the model adopts a discrete combinatorial action space, determining the trading direction at prespecified trading size for each asset, to ensure practical applicability. Our novel portfolio trading strategy takes advantage of three features to outperform in real-world trading. First, a mapping function is devised to handle and transform an initially found but infeasible action into a feasible action closest to the originally proposed ideal action. Second, by overcoming the dimensionality problem, this study establishes models of agent and Q-network for deriving a multi-asset trading strategy in the predefined action space. Last, this study introduces a technique that has the advantage of deriving a well-fitted multi-asset trading strategy by designing an agent to simulate all feasible actions in each state. To validate our approach, we conduct backtests for two representative portfolios and demonstrate superior results over the benchmark strategies.

Suggested Citation

  • Hyungjun Park & Min Kyu Sim & Dong Gu Choi, 2019. "An intelligent financial portfolio trading strategy using deep Q-learning," Papers 1907.03665, arXiv.org, revised Nov 2019.
  • Handle: RePEc:arx:papers:1907.03665
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1907.03665
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Justin Sirignano & Rama Cont, 2018. "Universal features of price formation in financial markets: perspectives from Deep Learning," Papers 1803.06917, arXiv.org.
    2. G. Consigli & M. Dempster, 1998. "Dynamic stochastic programmingfor asset-liability management," Annals of Operations Research, Springer, vol. 81(0), pages 131-162, June.
    3. Kouwenberg, Roy, 2001. "Scenario generation and stochastic programming models for asset liability management," European Journal of Operational Research, Elsevier, vol. 134(2), pages 279-292, October.
    4. Papailias, Fotis & Thomakos, Dimitrios D., 2015. "An improved moving average technical trading rule," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 458-469.
    5. Justin Sirignano & Rama Cont, 2018. "Universal features of price formation in financial markets: perspectives from Deep Learning," Working Papers hal-01754054, HAL.
    6. Zhu, Yingzi & Zhou, Guofu, 2009. "Technical analysis: An asset allocation perspective on the use of moving averages," Journal of Financial Economics, Elsevier, vol. 92(3), pages 519-544, June.
    7. Golub, Bennett & Holmer, Martin & McKendall, Raymond & Pohlman, Lawrence & Zenios, Stavros A., 1995. "A stochastic programming model for money management," European Journal of Operational Research, Elsevier, vol. 85(2), pages 282-296, September.
    8. Francesco Bertoluzzo & Marco Corazza, 2012. "Reinforcement Learning for automatic financial trading: Introduction and some applications," Working Papers 2012:33, Department of Economics, University of Venice "Ca' Foscari", revised 2012.
    9. Xufre Casqueiro, Patricia & Rodrigues, Antonio J.L., 2006. "Neuro-dynamic trading methods," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1400-1412, December.
    10. Zhengyao Jiang & Dixing Xu & Jinjun Liang, 2017. "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem," Papers 1706.10059, arXiv.org, revised Jul 2017.
    11. Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
    12. Brock, William & Lakonishok, Josef & LeBaron, Blake, 1992. "Simple Technical Trading Rules and the Stochastic Properties of Stock Returns," Journal of Finance, American Finance Association, vol. 47(5), pages 1731-1764, December.
    13. Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pedro M. Mirete-Ferrer & Alberto Garcia-Garcia & Juan Samuel Baixauli-Soler & Maria A. Prats, 2022. "A Review on Machine Learning for Asset Management," Risks, MDPI, vol. 10(4), pages 1-46, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmet Murat Ozbayoglu & Mehmet Ugur Gudelek & Omer Berat Sezer, 2020. "Deep Learning for Financial Applications : A Survey," Papers 2002.05786, arXiv.org.
    2. Fischer, Thomas G., 2018. "Reinforcement learning in financial markets - a survey," FAU Discussion Papers in Economics 12/2018, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    3. Xie, Fei & Huang, Yongxi, 2018. "A multistage stochastic programming model for a multi-period strategic expansion of biofuel supply chain under evolving uncertainties," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 111(C), pages 130-148.
    4. Libo Yin & Liyan Han, 2013. "Options strategies for international portfolios with overall risk management via multi-stage stochastic programming," Annals of Operations Research, Springer, vol. 206(1), pages 557-576, July.
    5. Omer Berat Sezer & Mehmet Ugur Gudelek & Ahmet Murat Ozbayoglu, 2019. "Financial Time Series Forecasting with Deep Learning : A Systematic Literature Review: 2005-2019," Papers 1911.13288, arXiv.org.
    6. Iwao Maeda & David deGraw & Michiharu Kitano & Hiroyasu Matsushima & Hiroki Sakaji & Kiyoshi Izumi & Atsuo Kato, 2020. "Deep Reinforcement Learning in Agent Based Financial Market Simulation," JRFM, MDPI, vol. 13(4), pages 1-17, April.
    7. Qi Zhao, 2020. "A Deep Learning Framework for Predicting Digital Asset Price Movement from Trade-by-trade Data," Papers 2010.07404, arXiv.org.
    8. Paul Bilokon & Yitao Qiu, 2023. "Transformers versus LSTMs for electronic trading," Papers 2309.11400, arXiv.org.
    9. Aiusha Sangadiev & Rodrigo Rivera-Castro & Kirill Stepanov & Andrey Poddubny & Kirill Bubenchikov & Nikita Bekezin & Polina Pilyugina & Evgeny Burnaev, 2020. "DeepFolio: Convolutional Neural Networks for Portfolios with Limit Order Book Data," Papers 2008.12152, arXiv.org.
    10. Jonathan Sadighian, 2019. "Deep Reinforcement Learning in Cryptocurrency Market Making," Papers 1911.08647, arXiv.org.
    11. Chia-Lin Chang & Jukka Ilomäki & Hannu Laurila & Michael McAleer, 2018. "Long Run Returns Predictability and Volatility with Moving Averages," Risks, MDPI, vol. 6(4), pages 1-18, September.
    12. Shi Yafeng & Tao Xiangxing & Shi Yanlong & Zhu Nenghui & Ying Tingting & Peng Xun, 2020. "Can Technical Indicators Provide Information for Future Volatility: International Evidence," Journal of Systems Science and Information, De Gruyter, vol. 8(1), pages 53-66, February.
    13. Wen, Danyan & Liu, Li & Wang, Yudong & Zhang, Yaojie, 2022. "Forecasting crude oil market returns: Enhanced moving average technical indicators," Resources Policy, Elsevier, vol. 76(C).
    14. Ivan Peñaloza & Pablo Padilla, 2022. "A Pricing Method in a Constrained Market with Differential Informational Frameworks," Computational Economics, Springer;Society for Computational Economics, vol. 60(3), pages 1055-1100, October.
    15. Arjan Berkelaar & Roy Kouwenberg, 2011. "A Liability-Relative Drawdown Approach to Pension Asset Liability Management," Palgrave Macmillan Books, in: Gautam Mitra & Katharina Schwaiger (ed.), Asset and Liability Management Handbook, chapter 14, pages 352-382, Palgrave Macmillan.
    16. Ymir Makinen & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2018. "Forecasting of Jump Arrivals in Stock Prices: New Attention-based Network Architecture using Limit Order Book Data," Papers 1810.10845, arXiv.org.
    17. Hubert Dichtl, 2020. "Investing in the S&P 500 index: Can anything beat the buy‐and‐hold strategy?," Review of Financial Economics, John Wiley & Sons, vol. 38(2), pages 352-378, April.
    18. Ben R. Marshall & Nhut H. Nguyen & Nuttawat Visaltanachoti, 2017. "Time series momentum and moving average trading rules," Quantitative Finance, Taylor & Francis Journals, vol. 17(3), pages 405-421, March.
    19. Sermpinis, Georgios & Hassanniakalager, Arman & Stasinakis, Charalampos & Psaradellis, Ioannis, 2021. "Technical analysis profitability and Persistence: A discrete false discovery approach on MSCI indices," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 73(C).
    20. Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1907.03665. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.