Deep Prediction Of Investor Interest: a Supervised Clustering Approach
Author
Abstract
Suggested Citation
DOI: 10.3233/AF-200296
Note: View the original document on HAL open archive server: https://hal.science/hal-02276055v3
Download full text from publisher
Other versions of this item:
- Baptiste Barreau & Laurent Carlier & Damien Challet, 2019. "Deep Prediction of Investor Interest: a Supervised Clustering Approach," Papers 1909.05289, arXiv.org, revised Feb 2021.
References listed on IDEAS
- Federico Musciotto & Luca Marotta & Jyrki Piilo & Rosario N. Mantegna, 2018. "Long-term ecology of investors in a financial market," Palgrave Communications, Palgrave Macmillan, vol. 4(1), pages 1-12, December.
- Justin Sirignano & Rama Cont, 2018. "Universal features of price formation in financial markets: perspectives from Deep Learning," Papers 1803.06917, arXiv.org.
- Damien Challet & R'emy Chicheportiche & Mehdi Lallouache & Serge Kassibrakis, 2016.
"Statistically validated lead-lag networks and inventory prediction in the foreign exchange market,"
Papers
1609.04640, arXiv.org, revised Jul 2018.
- Damien Challet & Rémy Chicheportiche & Mehdi Lallouache & Serge Kassibrakis, 2018. "Statistically validated leadlag networks and inventory prediction in the foreign exchange market," Post-Print hal-01705087, HAL.
- Justin Sirignano & Rama Cont, 2018. "Universal features of price formation in financial markets: perspectives from Deep Learning," Working Papers hal-01754054, HAL.
- Kk{e}stutis Baltakys & Juho Kanniainen & Frank Emmert-Streib, 2017. "Multilayer Aggregation with Statistical Validation: Application to Investor Networks," Papers 1708.09850, arXiv.org, revised May 2018.
- repec:wsi:acsxxx:v:21:y:2018:i:08:n:s0219525918500194 is not listed on IDEAS
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Baptiste Barreau & Laurent Carlier & Damien Challet, 2019.
"Deep Prediction of Investor Interest: a Supervised Clustering Approach,"
Papers
1909.05289, arXiv.org, revised Feb 2021.
- Baptiste Barreau & Laurent Carlier & Damien Challet, 2019. "Deep Prediction Of Investor Interest: a Supervised Clustering Approach," Working Papers hal-02276055, HAL.
- Zihao Zhang & Stefan Zohren & Stephen Roberts, 2018. "DeepLOB: Deep Convolutional Neural Networks for Limit Order Books," Papers 1808.03668, arXiv.org, revised Jan 2020.
- Omer Berat Sezer & Mehmet Ugur Gudelek & Ahmet Murat Ozbayoglu, 2019. "Financial Time Series Forecasting with Deep Learning : A Systematic Literature Review: 2005-2019," Papers 1911.13288, arXiv.org.
- Takuya Shintate & Lukáš Pichl, 2019. "Trend Prediction Classification for High Frequency Bitcoin Time Series with Deep Learning," JRFM, MDPI, vol. 12(1), pages 1-15, January.
- Qi Zhao, 2020. "A Deep Learning Framework for Predicting Digital Asset Price Movement from Trade-by-trade Data," Papers 2010.07404, arXiv.org.
- Bryan Lim & Stefan Zohren & Stephen Roberts, 2019. "Enhancing Time Series Momentum Strategies Using Deep Neural Networks," Papers 1904.04912, arXiv.org, revised Sep 2020.
- Marcus Cordi & Damien Challet & Serge Kassibrakis, 2021.
"The market nanostructure origin of asset price time reversal asymmetry,"
Quantitative Finance, Taylor & Francis Journals, vol. 21(2), pages 295-304, February.
- Marcus Cordi & Damien Challet & Serge Kassibrakis, 2018. "The market nanostructure origin of asset price time reversal asymmetry," Post-Print hal-01966419, HAL.
- Marcus Cordi & Damien Challet & Serge Kassibrakis, 2019. "The market nanostructure origin of asset price time reversal asymmetry," Papers 1901.00834, arXiv.org, revised Apr 2020.
- Arthur le Calvez & Dave Cliff, 2018. "Deep Learning can Replicate Adaptive Traders in a Limit-Order-Book Financial Market," Papers 1811.02880, arXiv.org.
- Hyungjun Park & Min Kyu Sim & Dong Gu Choi, 2019. "An intelligent financial portfolio trading strategy using deep Q-learning," Papers 1907.03665, arXiv.org, revised Nov 2019.
- Parley Ruogu Yang, 2021. "Forecasting high-frequency financial time series: an adaptive learning approach with the order book data," Papers 2103.00264, arXiv.org.
- Fan Fang & Waichung Chung & Carmine Ventre & Michail Basios & Leslie Kanthan & Lingbo Li & Fan Wu, 2020. "Ascertaining price formation in cryptocurrency markets with DeepLearning," Papers 2003.00803, arXiv.org.
- Ahmet Murat Ozbayoglu & Mehmet Ugur Gudelek & Omer Berat Sezer, 2020. "Deep Learning for Financial Applications : A Survey," Papers 2002.05786, arXiv.org.
- Chen, Zhang-HangJian & Wu, Wang-Long & Li, Sai-Ping & Bao, Kun & Koedijk, Kees G., 2024. "Social media information diffusion and excess stock returns co-movement," International Review of Financial Analysis, Elsevier, vol. 91(C).
- Jonathan Sadighian, 2019. "Deep Reinforcement Learning in Cryptocurrency Market Making," Papers 1911.08647, arXiv.org.
- Kieran Wood & Stephen Roberts & Stefan Zohren, 2021. "Slow Momentum with Fast Reversion: A Trading Strategy Using Deep Learning and Changepoint Detection," Papers 2105.13727, arXiv.org, revised Dec 2021.
- Luca De Gennaro Aquino & Carole Bernard, 2019. "Bounds on Multi-asset Derivatives via Neural Networks," Papers 1911.05523, arXiv.org, revised Nov 2020.
- Ivan Peñaloza & Pablo Padilla, 2022. "A Pricing Method in a Constrained Market with Differential Informational Frameworks," Computational Economics, Springer;Society for Computational Economics, vol. 60(3), pages 1055-1100, October.
- Ymir Makinen & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2018. "Forecasting of Jump Arrivals in Stock Prices: New Attention-based Network Architecture using Limit Order Book Data," Papers 1810.10845, arXiv.org.
- Carlo Campajola & Fabrizio Lillo & Daniele Tantari, 2019. "Unveiling the relation between herding and liquidity with trader lead-lag networks," Papers 1909.10807, arXiv.org, revised Mar 2020.
- Eduard Silantyev, 2019. "Order flow analysis of cryptocurrency markets," Digital Finance, Springer, vol. 1(1), pages 191-218, November.
More about this item
Keywords
investor activity prediction; deep learning; neural networks; mixture of experts; clustering;All these keywords.
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2021-03-29 (Big Data)
- NEP-CMP-2021-03-29 (Computational Economics)
- NEP-CWA-2021-03-29 (Central and Western Asia)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-02276055. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.