IDEAS home Printed from https://ideas.repec.org/a/spr/digfin/v1y2019i1d10.1007_s42521-019-00007-w.html
   My bibliography  Save this article

Order flow analysis of cryptocurrency markets

Author

Listed:
  • Eduard Silantyev

    (Thalesians Ltd.
    BNP Paribas
    London Institute of Banking and Finance)

Abstract

Order flow analysis studies the impact of individual order book events on resulting price change. Using data acquired from BitMex, the largest cryptocurrency exchange by traded volume, the study conducts an in-depth analysis on the trade and quote data of the XBTUSD perpetual contract. The study demonstrates that the trade flow imbalance is better at explaining contemporaneous price changes than the aggregate order flow imbalance. Overall, the contemporaneous price change exhibits a strong linear relationship with the order flow imbalance over large enough time intervals. Lack of depth and low update arrival rates in cryptocurrency markets are found to be the main differentiators between the nascent asset class market microstructure and that of the established markets.

Suggested Citation

  • Eduard Silantyev, 2019. "Order flow analysis of cryptocurrency markets," Digital Finance, Springer, vol. 1(1), pages 191-218, November.
  • Handle: RePEc:spr:digfin:v:1:y:2019:i:1:d:10.1007_s42521-019-00007-w
    DOI: 10.1007/s42521-019-00007-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s42521-019-00007-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s42521-019-00007-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paolo Pagnottoni & Thomas Dimpfl, 2019. "Price discovery on Bitcoin markets," Digital Finance, Springer, vol. 1(1), pages 139-161, November.
    2. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2013. "Limit order books," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1709-1742, November.
    3. Upson, James & Van Ness, Robert A., 2017. "Multiple markets, algorithmic trading, and market liquidity," Journal of Financial Markets, Elsevier, vol. 32(C), pages 49-68.
    4. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: I. Empirical facts," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 991-1012.
    5. Frédéric Abergel & Aymen Jedidi, 2015. "Long-Time Behavior of a Hawkes Process--Based Limit Order Book," Post-Print hal-01121711, HAL.
    6. Chordia, Tarun & Roll, Richard & Subrahmanyam, Avanidhar, 2002. "Order imbalance, liquidity, and market returns," Journal of Financial Economics, Elsevier, vol. 65(1), pages 111-130, July.
    7. Andrei Kirilenko & Albert S. Kyle & Mehrdad Samadi & Tugkan Tuzun, 2017. "The Flash Crash: High-Frequency Trading in an Electronic Market," Journal of Finance, American Finance Association, vol. 72(3), pages 967-998, June.
    8. Rama Cont & Adrien de Larrard, 2013. "Price Dynamics in a Markovian Limit Order Market," Post-Print hal-00552252, HAL.
    9. Yacine Aït-Sahalia & Jean Jacod, 2014. "High-Frequency Financial Econometrics," Economics Books, Princeton University Press, edition 1, number 10261.
    10. Lee, Charles M C & Ready, Mark J, 1991. "Inferring Trade Direction from Intraday Data," Journal of Finance, American Finance Association, vol. 46(2), pages 733-746, June.
    11. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    12. Justin Sirignano & Rama Cont, 2018. "Universal features of price formation in financial markets: perspectives from Deep Learning," Papers 1803.06917, arXiv.org.
    13. Justin Sirignano & Rama Cont, 2018. "Universal features of price formation in financial markets: perspectives from Deep Learning," Working Papers hal-01754054, HAL.
    14. Rama Cont & Arseniy Kukanov & Sasha Stoikov, 2014. "The Price Impact of Order Book Events," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 47-88.
    15. Stephen Chan & Jeffrey Chu & Saralees Nadarajah & Joerg Osterrieder, 2017. "A Statistical Analysis of Cryptocurrencies," JRFM, MDPI, vol. 10(2), pages 1-23, May.
    16. Frank Kelly & Elena Yudovina, 2015. "A Markov model of a limit order book: thresholds, recurrence, and trading strategies," Papers 1504.00579, arXiv.org, revised Mar 2017.
    17. Karpoff, Jonathan M., 1987. "The Relation between Price Changes and Trading Volume: A Survey," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(1), pages 109-126, March.
    18. repec:hal:wpaper:hal-01121711 is not listed on IDEAS
    19. Michel Rauchs & Garrick Hileman, 2017. "Global Cryptocurrency Benchmarking Study," Cambridge Centre for Alternative Finance Reports 201704-gcbs, Cambridge Centre for Alternative Finance, Cambridge Judge Business School, University of Cambridge.
    20. Nataliya Bershova & Dmitry Rakhlin, 2013. "The non-linear market impact of large trades: evidence from buy-side order flow," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1759-1778, November.
    21. Weibing Huang & Charles-Albert Lehalle & Mathieu Rosenbaum, 2015. "Simulating and Analyzing Order Book Data: The Queue-Reactive Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 107-122, March.
    22. Jonathan Donier & Julius Bonart, 2014. "A Million Metaorder Analysis of Market Impact on the Bitcoin," Papers 1412.4503, arXiv.org, revised Sep 2015.
    23. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: I. Empirical facts," Post-Print hal-00621058, HAL.
    24. Jeffrey Chu & Stephen Chan & Saralees Nadarajah & Joerg Osterrieder, 2017. "GARCH Modelling of Cryptocurrencies," JRFM, MDPI, vol. 10(4), pages 1-15, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lennart Ante, 2022. "The Non-Fungible Token (NFT) Market and Its Relationship with Bitcoin and Ethereum," FinTech, MDPI, vol. 1(3), pages 1-9, June.
    2. Jeon, Yoontae & Samarbakhsh, Laleh & Hewitt, Kenji, 2021. "Fragmentation in the Bitcoin market: Evidence from multiple coexisting order books," Finance Research Letters, Elsevier, vol. 39(C).
    3. Jörg Osterrieder & Andrea Barletta, 2019. "Editorial on the Special Issue on Cryptocurrencies," Digital Finance, Springer, vol. 1(1), pages 1-4, November.
    4. Johann Lussange & Stefano Vrizzi & Stefano Palminteri & Boris Gutkin, 2024. "Modelling crypto markets by multi-agent reinforcement learning," Papers 2402.10803, arXiv.org.
    5. Alessio Brini & Jimmie Lenz, 2024. "A comparison of cryptocurrency volatility-benchmarking new and mature asset classes," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-38, December.
    6. Alessio Brini & Jimmie Lenz, 2024. "A Comparison of Cryptocurrency Volatility-benchmarking New and Mature Asset Classes," Papers 2404.04962, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng Wu & Marcello Rambaldi & Jean-Franc{c}ois Muzy & Emmanuel Bacry, 2019. "Queue-reactive Hawkes models for the order flow," Papers 1901.08938, arXiv.org.
    2. Peng Wu & Marcello Rambaldi & Jean-François Muzy & Emmanuel Bacry, 2021. "Queue-reactive Hawkes models for the order flow," Working Papers hal-02409073, HAL.
    3. Ingemar Kaj & Mine Caglar, 2017. "A buffer Hawkes process for limit order books," Papers 1710.03506, arXiv.org.
    4. Gu, Gao-Feng & Xiong, Xiong & Zhang, Yong-Jie & Chen, Wei & Zhang, Wei & Zhou, Wei-Xing, 2016. "Stylized facts of price gaps in limit order books," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 48-58.
    5. Julius Bonart & Martin D. Gould, 2017. "Latency and liquidity provision in a limit order book," Quantitative Finance, Taylor & Francis Journals, vol. 17(10), pages 1601-1616, October.
    6. Ivan Jericevich & Patrick Chang & Tim Gebbie, 2021. "Simulation and estimation of an agent-based market-model with a matching engine," Papers 2108.07806, arXiv.org, revised Aug 2021.
    7. Federico Gonzalez & Mark Schervish, 2017. "Instantaneous order impact and high-frequency strategy optimization in limit order books," Papers 1707.01167, arXiv.org, revised Oct 2017.
    8. Antoine Jacquier & Hao Liu, 2017. "Optimal liquidation in a Level-I limit order book for large tick stocks," Papers 1701.01327, arXiv.org, revised Nov 2017.
    9. Gao-Feng Gu & Xiong Xiong & Yong-Jie Zhang & Wei Chen & Wei Zhang & Wei-Xing Zhou, 2014. "Stylized facts of price gaps in limit order books: Evidence from Chinese stocks," Papers 1405.1247, arXiv.org.
    10. Ioane Muni Toke & Nakahiro Yoshida, 2020. "Analyzing order flows in limit order books with ratios of Cox-type intensities," Post-Print hal-01799398, HAL.
    11. Konark Jain & Nick Firoozye & Jonathan Kochems & Philip Treleaven, 2024. "Limit Order Book Simulations: A Review," Papers 2402.17359, arXiv.org, revised Mar 2024.
    12. Ioane Muni Toke & Nakahiro Yoshida, 2019. "Analyzing order flows in limit order books with ratios of Cox-type intensities," Working Papers hal-01799398, HAL.
    13. Martin D. Gould & Julius Bonart, 2015. "Queue Imbalance as a One-Tick-Ahead Price Predictor in a Limit Order Book," Papers 1512.03492, arXiv.org.
    14. Fabrizio Lillo, 2021. "Order flow and price formation," Papers 2105.00521, arXiv.org.
    15. Kyle Bechler & Michael Ludkovski, 2017. "Order Flows and Limit Order Book Resiliency on the Meso-Scale," Papers 1708.02715, arXiv.org.
    16. Ioane Muni Toke & Nakahiro Yoshida, 2018. "Analyzing order flows in limit order books with ratios of Cox-type intensities," Papers 1805.06682, arXiv.org, revised Aug 2019.
    17. Ivan Jericevich & Patrick Chang & Tim Gebbie, 2021. "Simulation and estimation of a point-process market-model with a matching engine," Papers 2105.02211, arXiv.org, revised Aug 2021.
    18. Alberto Ciacci & Takumi Sueshige & Hideki Takayasu & Kim Christensen & Misako Takayasu, 2020. "The microscopic relationships between triangular arbitrage and cross-currency correlations in a simple agent based model of foreign exchange markets," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-19, June.
    19. Zihao Zhang & Stefan Zohren & Stephen Roberts, 2018. "DeepLOB: Deep Convolutional Neural Networks for Limit Order Books," Papers 1808.03668, arXiv.org, revised Jan 2020.
    20. Xiaofei Lu & Frédéric Abergel, 2017. "Limit order book modelling with high dimensional Hawkes processes," Working Papers hal-01512430, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:digfin:v:1:y:2019:i:1:d:10.1007_s42521-019-00007-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.