IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2002.00953.html
   My bibliography  Save this paper

Quid Pro Quo allocations in Production-Inventory games

Author

Listed:
  • Luis Guardiola
  • Ana Meca
  • Justo Puerto

Abstract

The concept of Owen point, introduced in Guardiola et al. (2009), is an appealing solution concept that for Production-Inventory games (PI-games) always belongs to their core. The Owen point allows all the players in the game to operate at minimum cost but it does not take into account the cost reduction induced by essential players over their followers (fans). Thus, it may be seen as an altruistic allocation for essential players what can be criticized. The aim this paper is two-fold: to study the structure and complexity of the core of PI-games and to introduce new core allocations for PI-games improving the weaknesses of the Owen point. Regarding the first goal, we advance further on the analysis of PI-games and we analyze its core structure and algorithmic complexity. Specifically, we prove that the number of extreme points of the core of PI-games is exponential on the number of players. On the other hand, we propose and characterize a new core-allocation, the Omega point, which compensates the essential players for their role on reducing the costs of their fans. Moreover, we define another solution concept, the Quid Pro Quo set (QPQ-set) of allocations, which is based on the Owen and Omega points. Among all the allocations in this set, we emphasize what we call the Solomonic QPQ allocation and we provide some necessary conditions for the coincidence of that allocation with the Shapley value and the Nucleolus.

Suggested Citation

  • Luis Guardiola & Ana Meca & Justo Puerto, 2020. "Quid Pro Quo allocations in Production-Inventory games," Papers 2002.00953, arXiv.org.
  • Handle: RePEc:arx:papers:2002.00953
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2002.00953
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kar, Anirban & Mitra, Manipushpak & Mutuswami, Suresh, 2009. "On the coincidence of the prenucleolus and the Shapley value," Mathematical Social Sciences, Elsevier, vol. 57(1), pages 16-25, January.
    2. Shanfeng Zhu & Xiaotie Deng & Maocheng Cai & Qizhi Fang, 2002. "On computational complexity of membership test in flow games and linear production games," International Journal of Game Theory, Springer;Game Theory Society, vol. 31(1), pages 39-45.
    3. Guardiola, Luis A. & Meca, Ana & Puerto, Justo, 2008. "Production-inventory games and PMAS-games: Characterizations of the Owen point," Mathematical Social Sciences, Elsevier, vol. 56(1), pages 96-108, July.
    4. Kuipers, Jeroen, 1993. "On the Core of Information Graph Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 21(4), pages 339-350.
    5. Shapley, Lloyd S. & Shubik, Martin, 1969. "On market games," Journal of Economic Theory, Elsevier, vol. 1(1), pages 9-25, June.
    6. Sotomayor, Marilda, 2003. "Some further remark on the core structure of the assignment game," Mathematical Social Sciences, Elsevier, vol. 46(3), pages 261-265, December.
    7. Hamers, Herbert & Klijn, Flip & Solymosi, Tamas & Tijs, Stef & Pere Villar, Joan, 2002. "Assignment Games Satisfy the CoMa-Property," Games and Economic Behavior, Elsevier, vol. 38(2), pages 231-239, February.
    8. Perea, Federico & Puerto, Justo & Fernández, Francisco R., 2012. "Avoiding unfairness of Owen allocations in linear production processes," European Journal of Operational Research, Elsevier, vol. 220(1), pages 125-131.
    9. Guardiola, Luis A. & Meca, Ana & Puerto, Justo, 2009. "Production-inventory games: A new class of totally balanced combinatorial optimization games," Games and Economic Behavior, Elsevier, vol. 65(1), pages 205-219, January.
    10. Sprumont, Yves, 1990. "Population monotonic allocation schemes for cooperative games with transferable utility," Games and Economic Behavior, Elsevier, vol. 2(4), pages 378-394, December.
    11. Xiaotie Deng & Toshihide Ibaraki & Hiroshi Nagamochi, 1999. "Algorithmic Aspects of the Core of Combinatorial Optimization Games," Mathematics of Operations Research, INFORMS, vol. 24(3), pages 751-766, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luis A. Guardiola & Ana Meca & Justo Puerto, 2021. "Enforcing fair cooperation in production-inventory settings with heterogeneous agents," Annals of Operations Research, Springer, vol. 305(1), pages 59-80, October.
    2. Drechsel, J. & Kimms, A., 2010. "Computing core allocations in cooperative games with an application to cooperative procurement," International Journal of Production Economics, Elsevier, vol. 128(1), pages 310-321, November.
    3. Luis A. Guardiola & Ana Meca & Justo Puerto, 2022. "The effect of consolidated periods in heterogeneous lot-sizing games," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 380-404, July.
    4. Trudeau, Christian & Vidal-Puga, Juan, 2020. "Clique games: A family of games with coincidence between the nucleolus and the Shapley value," Mathematical Social Sciences, Elsevier, vol. 103(C), pages 8-14.
    5. Ichiro Nishizaki & Tomohiro Hayashida & Shinya Sekizaki & Kenta Tanaka, 2023. "Averaged dual solution for linear production games and its characterization," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(2), pages 523-555, June.
    6. Hamers, H.J.M. & Miquel, S. & Norde, H.W., 2011. "Monotonic Stable Solutions for Minimum Coloring Games," Other publications TiSEM efae8d09-83e6-4fe4-9623-e, Tilburg University, School of Economics and Management.
    7. Luis A. Guardiola & Ana Meca & Justo Puerto, 2021. "Unitary Owen Points in Cooperative Lot-Sizing Models with Backlogging," Mathematics, MDPI, vol. 9(8), pages 1-19, April.
    8. Hamers, H.J.M. & Miquel, S. & Norde, H.W., 2011. "Monotonic Stable Solutions for Minimum Coloring Games," Discussion Paper 2011-016, Tilburg University, Center for Economic Research.
    9. Li, Jun & Feng, Hairong & Zeng, Yinlian, 2014. "Inventory games with permissible delay in payments," European Journal of Operational Research, Elsevier, vol. 234(3), pages 694-700.
    10. Takaaki Abe & Shuige Liu, 2019. "Monotonic core allocation paths for assignment games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 53(4), pages 557-573, December.
    11. van Velzen, S., 2003. "Dominating Set Games," Discussion Paper 2003-039, Tilburg University, Center for Economic Research.
    12. Hezarkhani, Behzad & Slikker, Marco & Van Woensel, Tom, 2018. "Collaborative replenishment in the presence of intermediaries," European Journal of Operational Research, Elsevier, vol. 266(1), pages 135-146.
    13. Marina Núñez & Tamás Solymosi, 2017. "Lexicographic allocations and extreme core payoffs: the case of assignment games," Annals of Operations Research, Springer, vol. 254(1), pages 211-234, July.
    14. Trudeau, Christian & Vidal-Puga, Juan, 2017. "On the set of extreme core allocations for minimal cost spanning tree problems," Journal of Economic Theory, Elsevier, vol. 169(C), pages 425-452.
    15. Westerink-Duijzer, L.E. & Schlicher, L.P.J. & Musegaas, M., 2019. "Fair allocations for cooperation problems in vaccination," Econometric Institute Research Papers EI2019-06, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    16. Stefano Moretti & Rodica Branzei & Henk Norde & Stef Tijs, 2004. "The P-value for cost sharing in minimum," Theory and Decision, Springer, vol. 56(1), pages 47-61, April.
    17. Takaaki Abe & Shuige Liu, 2018. "Monotonic Core Allocation Paths for Assignment Games," Working Papers 1808, Waseda University, Faculty of Political Science and Economics.
    18. R. Branzei & E. Gutiérrez & N. Llorca & J. Sánchez-Soriano, 2021. "Does it make sense to analyse a two-sided market as a multi-choice game?," Annals of Operations Research, Springer, vol. 301(1), pages 17-40, June.
    19. Guardiola, Luis A. & Meca, Ana & Puerto, Justo, 2023. "Allocating the surplus induced by cooperation in distribution chains with multiple suppliers and retailers," Journal of Mathematical Economics, Elsevier, vol. 108(C).
    20. Lotty E. Westerink‐Duijzer & Loe P. J. Schlicher & Marieke Musegaas, 2020. "Core Allocations for Cooperation Problems in Vaccination," Production and Operations Management, Production and Operations Management Society, vol. 29(7), pages 1720-1737, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2002.00953. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.