IDEAS home Printed from https://ideas.repec.org/a/eee/matsoc/v57y2009i1p16-25.html
   My bibliography  Save this article

On the coincidence of the prenucleolus and the Shapley value

Author

Listed:
  • Kar, Anirban
  • Mitra, Manipushpak
  • Mutuswami, Suresh

Abstract

We extend the literature on the coincidence of the prenucleolus and the Shapley value, by identifying a class of coalitional form games called PS games. We analyse the role of PS games in the context of queueing problems, and show that in the class of generalized queueing games only those queueing games with 'linear externalities' are PS games.

Suggested Citation

  • Kar, Anirban & Mitra, Manipushpak & Mutuswami, Suresh, 2009. "On the coincidence of the prenucleolus and the Shapley value," Mathematical Social Sciences, Elsevier, vol. 57(1), pages 16-25, January.
  • Handle: RePEc:eee:matsoc:v:57:y:2009:i:1:p:16-25
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165-4896(08)00085-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. A. van den Nouweland & P. Borm & W. van Golstein Brouwers & R. Groot Bruinderink & S. Tijs, 1996. "A Game Theoretic Approach to Problems in Telecommunication," Management Science, INFORMS, vol. 42(2), pages 294-303, February.
    2. Maniquet, Francois, 2003. "A characterization of the Shapley value in queueing problems," Journal of Economic Theory, Elsevier, vol. 109(1), pages 90-103, March.
    3. Chun, Youngsub, 2006. "A pessimistic approach to the queueing problem," Mathematical Social Sciences, Elsevier, vol. 51(2), pages 171-181, March.
    4. Hart, Sergiu & Mas-Colell, Andreu, 1989. "Potential, Value, and Consistency," Econometrica, Econometric Society, vol. 57(3), pages 589-614, May.
    5. Shapley, L. S. & Shubik, Martin, 1954. "A Method for Evaluating the Distribution of Power in a Committee System," American Political Science Review, Cambridge University Press, vol. 48(3), pages 787-792, September.
    6. SCHMEIDLER, David, 1969. "The nucleolus of a characteristic function game," LIDAM Reprints CORE 44, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    7. Martin J. Osborne & Ariel Rubinstein, 1994. "A Course in Game Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262650401, December.
    8. Winter, Eyal, 2002. "The shapley value," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 3, chapter 53, pages 2025-2054, Elsevier.
    9. Xiaotie Deng & Christos H. Papadimitriou, 1994. "On the Complexity of Cooperative Solution Concepts," Mathematics of Operations Research, INFORMS, vol. 19(2), pages 257-266, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. José M. Jiménez Gómez & María del Carmen Marco Gil & Pedro Gadea Blanco, 2010. "Some game-theoretic grounds for meeting people half-way," Working Papers. Serie AD 2010-04, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    2. Dehez, Pierre & Mêgnigbêto, Eustache, 2024. "Measuring the extent of synergies among innovation actors and their contributions: the Helix as a cooperative game," LIDAM Discussion Papers CORE 2024006, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Bendel, Dan & Haviv, Moshe, 2018. "Cooperation and sharing costs in a tandem queueing network," European Journal of Operational Research, Elsevier, vol. 271(3), pages 926-933.
    4. Youngsub Chun & Nari Park & Duygu Yengin, 2015. "Coincidence of Cooperative Game Theoretic Solutions in the Appointment Problem," School of Economics and Public Policy Working Papers 2015-09, University of Adelaide, School of Economics and Public Policy.
    5. Trudeau, Christian & Vidal-Puga, Juan, 2020. "Clique games: A family of games with coincidence between the nucleolus and the Shapley value," Mathematical Social Sciences, Elsevier, vol. 103(C), pages 8-14.
    6. Youngsub Chun, 2016. "Queueing Problems with Two Parallel Servers," Studies in Choice and Welfare, in: Fair Queueing, chapter 0, pages 141-157, Springer.
    7. García-Martínez, Jose A. & Mayor-Serra, Antonio J. & Meca, Ana, 2020. "Efficient Effort Equilibrium in Cooperation with Pairwise Cost Reduction," MPRA Paper 105604, University Library of Munich, Germany.
    8. Chang, Chih & Tseng, Ying-Chih, 2011. "On the coincidence property," Games and Economic Behavior, Elsevier, vol. 71(2), pages 304-314, March.
    9. Banerjee, Sreoshi, 2024. "On identifying efficient, fair and stable allocations in "generalized" sequencing games," MPRA Paper 120188, University Library of Munich, Germany.
    10. Luis A. Guardiola & Ana Meca & Justo Puerto, 2021. "Enforcing fair cooperation in production-inventory settings with heterogeneous agents," Annals of Operations Research, Springer, vol. 305(1), pages 59-80, October.
    11. Koji Yokote & Yukihiko Funaki, 2015. "Several bases of a game space and an application to the Shapley value," Working Papers 1419, Waseda University, Faculty of Political Science and Economics.
    12. Conan Mukherjee, 2013. "Weak group strategy-proof and queue-efficient mechanisms for the queueing problem with multiple machines," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(1), pages 131-163, February.
    13. Luis Guardiola & Ana Meca & Justo Puerto, 2020. "Quid Pro Quo allocations in Production-Inventory games," Papers 2002.00953, arXiv.org.
    14. Youngsub Chun & Manipushpak Mitra & Suresh Mutuswami, 2019. "Recent developments in the queueing problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 1-23, April.
    15. Jose A. García-Martínez & Ana Meca & G. Alexander Vergara, 2022. "Cooperative Purchasing with General Discount: A Game Theoretical Approach," Mathematics, MDPI, vol. 10(22), pages 1-20, November.
    16. Julio González-Díaz & Estela Sánchez-Rodríguez, 2014. "Understanding the coincidence of allocation rules: symmetry and orthogonality in TU-games," International Journal of Game Theory, Springer;Game Theory Society, vol. 43(4), pages 821-843, November.
    17. Pedro Gadea-Blanco & José-Manuel Giménez-Gómez & M. Carmen Marco-Gil, 2016. "Compromising in bifocal distribution games: the average value," Theory and Decision, Springer, vol. 81(3), pages 449-465, September.
    18. Yokote, Koji & Funaki, Yukihiko & Kamijo, Yoshio, 2017. "Coincidence of the Shapley value with other solutions satisfying covariance," Mathematical Social Sciences, Elsevier, vol. 89(C), pages 1-9.
    19. Pierre Dehez & Eustache Mêgnigbêto, 2024. "Measuring the extent of synergies among innovation actors and their contributions: the Helix as a cooperative game," Journal of Information Economics, Anser Press, vol. 2(2), pages 46-56, June.
    20. Emilio Calvo, 2021. "Redistribution of tax resources: a cooperative game theory approach," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 12(4), pages 633-686, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van den Brink, René & Chun, Youngsub & Funaki, Yukihiko & Zou, Zhengxing, 2023. "Balanced externalities and the proportional allocation of nonseparable contributions," European Journal of Operational Research, Elsevier, vol. 307(2), pages 975-983.
    2. Julio González-Díaz & Estela Sánchez-Rodríguez, 2014. "Understanding the coincidence of allocation rules: symmetry and orthogonality in TU-games," International Journal of Game Theory, Springer;Game Theory Society, vol. 43(4), pages 821-843, November.
    3. van den Brink, René & Rusinowska, Agnieszka, 2022. "The degree measure as utility function over positions in graphs and digraphs," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1033-1044.
    4. Béal, Sylvain & Ferrières, Sylvain & Rémila, Eric & Solal, Philippe, 2018. "The proportional Shapley value and applications," Games and Economic Behavior, Elsevier, vol. 108(C), pages 93-112.
    5. René van den Brink & Agnieszka Rusinowska, 2017. "The degree measure as utility function over positions in networks," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01592181, HAL.
    6. René Van Den Brink & Agnieszka Rusinowska, 2023. "Degree Centrality, von Neumann-Morgenstern Expected Utility and Externalities in Networks," Documents de travail du Centre d'Economie de la Sorbonne 23012, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    7. René Van Den Brink & Agnieszka Rusinowska, 2023. "Degree Centrality, von Neumann-Morgenstern Expected Utility and Externalities in Networks," Documents de travail du Centre d'Economie de la Sorbonne 23012r, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Jun 2024.
    8. Youngsub Chun & Manipushpak Mitra & Suresh Mutuswami, 2019. "Recent developments in the queueing problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 1-23, April.
    9. Rene van den Brink & Youngsub Chun & Yukihiko Funaki & Zhengxing Zou, 2021. "Balanced Externalities and the Proportional Allocation of Nonseparable Contributions," Tinbergen Institute Discussion Papers 21-024/II, Tinbergen Institute.
    10. van den Brink, René & Rusinowska, Agnieszka, 2024. "Degree centrality, von Neumann–Morgenstern expected utility and externalities in networks," European Journal of Operational Research, Elsevier, vol. 319(2), pages 669-677.
    11. Gustavo Bergantiños & Juan D. Moreno-Ternero, 2022. "On the axiomatic approach to sharing the revenues from broadcasting sports leagues," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 58(2), pages 321-347, February.
    12. René Brink & Youngsub Chun, 2012. "Balanced consistency and balanced cost reduction for sequencing problems," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 38(3), pages 519-529, March.
    13. Meinhardt, Holger Ingmar, 2021. "Disentangle the Florentine Families Network by the Pre-Kernel," MPRA Paper 106482, University Library of Munich, Germany.
    14. Trudeau, Christian & Vidal-Puga, Juan, 2020. "Clique games: A family of games with coincidence between the nucleolus and the Shapley value," Mathematical Social Sciences, Elsevier, vol. 103(C), pages 8-14.
    15. Ju, Yuan & Chun, Youngsub & van den Brink, René, 2014. "Auctioning and selling positions: A non-cooperative approach to queueing conflicts," Journal of Economic Theory, Elsevier, vol. 153(C), pages 33-45.
    16. Wenzhong Li & Genjiu Xu & Rene van den Brink, 2021. "Sharing the cost of cleaning up a polluted river," Tinbergen Institute Discussion Papers 21-028/II, Tinbergen Institute.
    17. Pierre Dehez, 2017. "On Harsanyi Dividends and Asymmetric Values," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 19(03), pages 1-36, September.
    18. Tanaka, Masato & Matsui, Tomomi, 2022. "Pseudo polynomial size LP formulation for calculating the least core value of weighted voting games," Mathematical Social Sciences, Elsevier, vol. 115(C), pages 47-51.
    19. Demetrescu, Camil & Lupia, Francesco & Mendicelli, Angelo & Ribichini, Andrea & Scarcello, Francesco & Schaerf, Marco, 2019. "On the Shapley value and its application to the Italian VQR research assessment exercise," Journal of Informetrics, Elsevier, vol. 13(1), pages 87-104.
    20. Stefano Moretti & Fioravante Patrone, 2008. "Transversality of the Shapley value," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(1), pages 1-41, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matsoc:v:57:y:2009:i:1:p:16-25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505565 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.