IDEAS home Printed from https://ideas.repec.org/p/wis/wpaper/1505.html
   My bibliography  Save this paper

On the set of extreme core allocations for minimal cost spanning tree problems

Author

Listed:
  • Christian Trudeau

    (Department of Economics, University of Windsor)

  • Juan Vidal-Puga

    (Research Group of Economic Analysis and Departamento de Estatistica e IO, Universidade de Vigo)

Abstract

Minimal cost spanning tree problems connect agents efficiently to a source when agents are located at different points and the cost of using an edge is fixed. We propose a method, based on the concept of marginal games, to generate all extreme points of the corresponding core. We show that three of the most famous solutions to share the cost of mcst problems, the Bird, folk and cycle-complete solutions, are closely related to our method.

Suggested Citation

  • Christian Trudeau & Juan Vidal-Puga, 2015. "On the set of extreme core allocations for minimal cost spanning tree problems," Working Papers 1505, University of Windsor, Department of Economics.
  • Handle: RePEc:wis:wpaper:1505
    as

    Download full text from publisher

    File URL: http://web2.uwindsor.ca/economics/RePEc/wis/pdf/1505.pdf
    File Function: First version, 2015
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Marina Núñez & Carles Rafels, 1998. "On extreme points of the core and reduced games," Annals of Operations Research, Springer, vol. 84(0), pages 121-133, December.
    2. Juan J. Vidal-Puga, 2004. "Bargaining with commitments," International Journal of Game Theory, Springer;Game Theory Society, vol. 33(1), pages 129-144, January.
    3. Feltkamp, V. & Tijs, S.H. & Muto, S., 1994. "On the irreducible core and the equal remaining obligations rule of minimum cost spanning extension problems," Other publications TiSEM 56ea8c64-a05f-4b3f-ab61-9, Tilburg University, School of Economics and Management.
    4. Tijs, S.H., 2005. "The First Steps with Alexia, the Average Lexicographic Value," Discussion Paper 2005-123, Tilburg University, Center for Economic Research.
    5. Perez-Castrillo, David & Sotomayor, Marilda, 2002. "A Simple Selling and Buying Procedure," Journal of Economic Theory, Elsevier, vol. 103(2), pages 461-474, April.
    6. Rodica Brânzei & Tamás Solymosi & Stef Tijs, 2005. "Strongly essential coalitions and the nucleolus of peer group games," International Journal of Game Theory, Springer;Game Theory Society, vol. 33(3), pages 447-460, September.
    7. Feltkamp, V. & Tijs, S.H. & Muto, S., 1994. "On the irreducible core and the equal remaining obligations rule of minimum cost spanning extension problems," Discussion Paper 1994-106, Tilburg University, Center for Economic Research.
    8. Tijs, S.H., 2005. "The First Steps with Alexia, the Average Lexicographic Value," Other publications TiSEM 0b4f9565-59f7-477f-b8f8-9, Tilburg University, School of Economics and Management.
    9. Christian Trudeau, 2013. "Characterizations Of The Kar And Folk Solutions For Minimum Cost Spanning Tree Problems," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 15(02), pages 1-16.
    10. Bogomolnaia, Anna & Moulin, Hervé, 2010. "Sharing a minimal cost spanning tree: Beyond the Folk solution," Games and Economic Behavior, Elsevier, vol. 69(2), pages 238-248, July.
    11. Bergantinos, Gustavo & Vidal-Puga, Juan J., 2007. "A fair rule in minimum cost spanning tree problems," Journal of Economic Theory, Elsevier, vol. 137(1), pages 326-352, November.
    12. Dutta, Bhaskar & Kar, Anirban, 2004. "Cost monotonicity, consistency and minimum cost spanning tree games," Games and Economic Behavior, Elsevier, vol. 48(2), pages 223-248, August.
    13. Trudeau, Christian, 2012. "A new stable and more responsive cost sharing solution for minimum cost spanning tree problems," Games and Economic Behavior, Elsevier, vol. 75(1), pages 402-412.
    14. Feltkamp, V. & Tijs, S.H. & Muto, S., 1994. "Minimum cost spanning extension problems : The proportional rule and the decentralized rule," Other publications TiSEM 2c6cd46b-7e72-4262-a479-3, Tilburg University, School of Economics and Management.
    15. Hamers, Herbert & Klijn, Flip & Solymosi, Tamas & Tijs, Stef & Pere Villar, Joan, 2002. "Assignment Games Satisfy the CoMa-Property," Games and Economic Behavior, Elsevier, vol. 38(2), pages 231-239, February.
    16. Potters, Jos & Poos, Rene & Tijs, Stef & Muto, Shigeo, 1989. "Clan games," Games and Economic Behavior, Elsevier, vol. 1(3), pages 275-293, September.
    17. Trudeau, Christian, 2009. "Cost sharing with multiple technologies," Games and Economic Behavior, Elsevier, vol. 67(2), pages 695-707, November.
    18. Tijs, Stef & Borm, Peter & Lohmann, Edwin & Quant, Marieke, 2011. "An average lexicographic value for cooperative games," European Journal of Operational Research, Elsevier, vol. 213(1), pages 210-220, August.
    19. Funaki, Y. & Tijs, S.H. & Brânzei, R., 2007. "Leximals, the Lexicore and the Average Lexicographic Value," Other publications TiSEM 405775ae-c634-49c5-9f9c-4, Tilburg University, School of Economics and Management.
    20. Potters, J.A.M. & Poos, R. & Tijs, S.H. & Muto, S., 1989. "Clan games," Other publications TiSEM 1855e4e3-7392-4ef0-a073-8, Tilburg University, School of Economics and Management.
    21. Bahel, Eric & Trudeau, Christian, 2014. "Stable lexicographic rules for shortest path games," Economics Letters, Elsevier, vol. 125(2), pages 266-269.
    22. Kuipers, Jeroen, 1993. "On the Core of Information Graph Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 21(4), pages 339-350.
    23. Takumi Kongo & Yukihiko Funaki & Rodica Branzei & Stef Tijs, 2010. "Non-Cooperative And Axiomatic Characterizations Of The Average Lexicographic Value," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 12(04), pages 417-435.
    24. Nunez, Marina & Rafels, Carles, 2003. "Characterization of the extreme core allocations of the assignment game," Games and Economic Behavior, Elsevier, vol. 44(2), pages 311-331, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christian Trudeau, 2023. "Minimum cost spanning tree problems as value sharing problems," International Journal of Game Theory, Springer;Game Theory Society, vol. 52(1), pages 253-272, March.
    2. José-Manuel Giménez-Gómez & Josep E Peris & Begoña Subiza, 2020. "An egalitarian approach for sharing the cost of a spanning tree," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-14, July.
    3. G. Bergantiños & J. Vidal-Puga, 2020. "One-way and two-way cost allocation in hub network problems," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(1), pages 199-234, March.
    4. Grabisch, Michel & Sudhölter, Peter, 2018. "On a class of vertices of the core," Games and Economic Behavior, Elsevier, vol. 108(C), pages 541-557.
    5. Bergantiños, Gustavo & Vidal-Puga, Juan, 2020. "Cooperative games for minimum cost spanning tree problems," MPRA Paper 104911, University Library of Munich, Germany.
    6. Trudeau, Christian & Vidal-Puga, Juan, 2020. "Clique games: A family of games with coincidence between the nucleolus and the Shapley value," Mathematical Social Sciences, Elsevier, vol. 103(C), pages 8-14.
    7. Marina Núñez, 2016. "Comments on: Remarkable polyhedra related to set functions, games and capacities," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 327-329, July.
    8. M. A. Hinojosa & A. Caro, 2021. "A non-cooperative game theory approach to cost sharing in networks," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(2), pages 219-251, October.
    9. Bahel, Eric & Trudeau, Christian, 2019. "A cost sharing example in which subsidies are necessary for stability," Economics Letters, Elsevier, vol. 185(C).
    10. Bahel, Eric, 2021. "Hyperadditive games and applications to networks or matching problems," Journal of Economic Theory, Elsevier, vol. 191(C).
    11. Gustavo Bergantiños & Juan Vidal-Puga, 2021. "A review of cooperative rules and their associated algorithms for minimum-cost spanning tree problems," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 12(1), pages 73-100, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bergantiños, Gustavo & Vidal-Puga, Juan, 2020. "Cooperative games for minimum cost spanning tree problems," MPRA Paper 104911, University Library of Munich, Germany.
    2. Trudeau, Christian & Vidal-Puga, Juan, 2020. "Clique games: A family of games with coincidence between the nucleolus and the Shapley value," Mathematical Social Sciences, Elsevier, vol. 103(C), pages 8-14.
    3. Eric Bahel & Christian Trudeau, 2017. "Minimum incoming cost rules for arborescences," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 49(2), pages 287-314, August.
    4. Gustavo Bergantiños & Juan Vidal-Puga, 2021. "A review of cooperative rules and their associated algorithms for minimum-cost spanning tree problems," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 12(1), pages 73-100, March.
    5. Eric Bahel & Christian Trudeau, 2016. "From spanning trees to arborescences: new and extended cost sharing solutions," Working Papers 1601, University of Windsor, Department of Economics.
    6. Christian Trudeau, 2014. "Characterizations of the cycle-complete and folk solutions for minimum cost spanning tree problems," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 42(4), pages 941-957, April.
    7. María Gómez-Rúa & Juan Vidal-Puga, 2017. "A monotonic and merge-proof rule in minimum cost spanning tree situations," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 63(3), pages 813-826, March.
    8. Grabisch, Michel & Sudhölter, Peter, 2018. "On a class of vertices of the core," Games and Economic Behavior, Elsevier, vol. 108(C), pages 541-557.
    9. Dutta, Bhaskar & Mishra, Debasis, 2012. "Minimum cost arborescences," Games and Economic Behavior, Elsevier, vol. 74(1), pages 120-143.
    10. Christian Trudeau, 2023. "Minimum cost spanning tree problems as value sharing problems," International Journal of Game Theory, Springer;Game Theory Society, vol. 52(1), pages 253-272, March.
    11. Moulin, Hervé, 2014. "Pricing traffic in a spanning network," Games and Economic Behavior, Elsevier, vol. 86(C), pages 475-490.
    12. Christian Trudeau, 2014. "Linking the Kar and folk solutions through a problem separation property," International Journal of Game Theory, Springer;Game Theory Society, vol. 43(4), pages 845-870, November.
    13. Jens Hougaard & Hervé Moulin & Lars Østerdal, 2010. "Decentralized pricing in minimum cost spanning trees," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 44(2), pages 293-306, August.
    14. Begoña Subiza & Josep E. Peris, 2021. "Sharing the cost of maximum quality optimal spanning trees," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 470-493, July.
    15. José-Manuel Giménez-Gómez & Josep E Peris & Begoña Subiza, 2020. "An egalitarian approach for sharing the cost of a spanning tree," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-14, July.
    16. Hernández, Penélope & Peris, Josep E. & Silva-Reus, José A., 2016. "Strategic sharing of a costly network," Journal of Mathematical Economics, Elsevier, vol. 66(C), pages 72-82.
    17. Chun, Youngsub & Lee, Joosung, 2012. "Sequential contributions rules for minimum cost spanning tree problems," Mathematical Social Sciences, Elsevier, vol. 64(2), pages 136-143.
    18. Trudeau, Christian, 2014. "Minimum cost spanning tree problems with indifferent agents," Games and Economic Behavior, Elsevier, vol. 84(C), pages 137-151.
    19. Kusunoki, Yoshifumi & Tanino, Tetsuzo, 2017. "Investigation on irreducible cost vectors in minimum cost arborescence problems," European Journal of Operational Research, Elsevier, vol. 261(1), pages 214-221.
    20. Bahel, Eric, 2021. "Hyperadditive games and applications to networks or matching problems," Journal of Economic Theory, Elsevier, vol. 191(C).

    More about this item

    Keywords

    Minimal cost spanning tree problems; extreme core allocations; reduced game; Bird solution; folk solution; cycle-complete solution.;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games
    • D63 - Microeconomics - - Welfare Economics - - - Equity, Justice, Inequality, and Other Normative Criteria and Measurement

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wis:wpaper:1505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christian Trudeau (email available below). General contact details of provider: https://edirc.repec.org/data/dwindca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.