IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1912.00244.html
   My bibliography  Save this paper

A Machine Learning Approach to Adaptive Robust Utility Maximization and Hedging

Author

Listed:
  • Tao Chen
  • Michael Ludkovski

Abstract

We investigate the adaptive robust control framework for portfolio optimization and loss-based hedging under drift and volatility uncertainty. Adaptive robust problems offer many advantages but require handling a double optimization problem (infimum over market measures, supremum over the control) at each instance. Moreover, the underlying Bellman equations are intrinsically multi-dimensional. We propose a novel machine learning approach that solves for the local saddle-point at a chosen set of inputs and then uses a nonparametric (Gaussian process) regression to obtain a functional representation of the value function. Our algorithm resembles control randomization and regression Monte Carlo techniques but also brings multiple innovations, including adaptive experimental design, separate surrogates for optimal control and the local worst-case measure, and computational speed-ups for the sup-inf optimization. Thanks to the new scheme we are able to consider settings that have been previously computationally intractable and provide several new financial insights about learning and optimal trading under unknown market parameters. In particular, we demonstrate the financial advantages of adaptive robust framework compared to adaptive and static robust alternatives.

Suggested Citation

  • Tao Chen & Michael Ludkovski, 2019. "A Machine Learning Approach to Adaptive Robust Utility Maximization and Hedging," Papers 1912.00244, arXiv.org, revised May 2020.
  • Handle: RePEc:arx:papers:1912.00244
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1912.00244
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael W. Brandt & Amit Goyal & Pedro Santa-Clara & Jonathan R. Stroud, 2005. "A Simulation Approach to Dynamic Portfolio Choice with an Application to Learning About Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 18(3), pages 831-873.
    2. Victoria C. P. Chen & David Ruppert & Christine A. Shoemaker, 1999. "Applying Experimental Design and Regression Splines to High-Dimensional Continuous-State Stochastic Dynamic Programming," Operations Research, INFORMS, vol. 47(1), pages 38-53, February.
    3. Lars Peter Hansen & Thomas J Sargent, 2014. "Robust Control and Model Misspecification," World Scientific Book Chapters, in: UNCERTAINTY WITHIN ECONOMIC MODELS, chapter 6, pages 155-216, World Scientific Publishing Co. Pte. Ltd..
    4. Risk, J. & Ludkovski, M., 2016. "Statistical emulators for pricing and hedging longevity risk products," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 45-60.
    5. Cong, F. & Oosterlee, C.W., 2016. "Multi-period mean–variance portfolio optimization based on Monte-Carlo simulation," Journal of Economic Dynamics and Control, Elsevier, vol. 64(C), pages 23-38.
    6. Alessandro Balata & Michael Ludkovski & Aditya Maheshwari & Jan Palczewski, 2019. "Statistical Learning for Probability-Constrained Stochastic Optimal Control," Papers 1905.00107, arXiv.org, revised Aug 2020.
    7. repec:dau:papers:123456789/12195 is not listed on IDEAS
    8. Vlad Bally & Gilles Pagès & Jacques Printems, 2005. "A Quantization Tree Method For Pricing And Hedging Multidimensional American Options," Mathematical Finance, Wiley Blackwell, vol. 15(1), pages 119-168, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peter Konhäusner, 2021. "Crowdsourcing in Sustainable Retail—A Theoretical Framework of Success Criteria," JRFM, MDPI, vol. 14(2), pages 1-21, February.
    2. Tomasz R. Bielecki & Tao Chen & Igor Cialenco, 2020. "Time-inconsistent Markovian control problems under model uncertainty with application to the mean-variance portfolio selection," Papers 2002.02604, arXiv.org, revised Sep 2020.
    3. Haitham Mohamed Elsaid, 2021. "A review of literature directions regarding the impact of fintech firms on the banking industry," Qualitative Research in Financial Markets, Emerald Group Publishing Limited, vol. 15(5), pages 693-711, October.
    4. Bo Li & Zeshui Xu, 2021. "Insights into financial technology (FinTech): a bibliometric and visual study," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-28, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vahidreza Yousefi & Siamak Haji Yakhchali & Jolanta Tamošaitienė, 2019. "Application of Duration Measure in Quantifying the Sensitivity of Project Returns to Changes in Discount Rates," Administrative Sciences, MDPI, vol. 9(1), pages 1-14, February.
    2. Zhu, Yichen & Escobar-Anel, Marcos, 2022. "Polynomial affine approach to HARA utility maximization with applications to OrnsteinUhlenbeck 4/2 models," Applied Mathematics and Computation, Elsevier, vol. 418(C).
    3. Rongju Zhang & Nicolas Langren'e & Yu Tian & Zili Zhu & Fima Klebaner & Kais Hamza, 2016. "Dynamic portfolio optimization with liquidity cost and market impact: a simulation-and-regression approach," Papers 1610.07694, arXiv.org, revised Jun 2019.
    4. Areski Cousin & Jérôme Lelong & Tom Picard, 2023. "Mean-variance dynamic portfolio allocation with transaction costs: a Wiener chaos expansion approach," Working Papers hal-04086378, HAL.
    5. Fei Cong & Cornelis W. Oosterlee, 2017. "Accurate and Robust Numerical Methods for the Dynamic Portfolio Management Problem," Computational Economics, Springer;Society for Computational Economics, vol. 49(3), pages 433-458, March.
    6. Hansen, Lars Peter & Sargent, Thomas J., 2022. "Structured ambiguity and model misspecification," Journal of Economic Theory, Elsevier, vol. 199(C).
    7. Hansen, Lars Peter, 2013. "Uncertainty Outside and Inside Economic Models," Nobel Prize in Economics documents 2013-7, Nobel Prize Committee.
    8. Vilkkumaa, Eeva & Liesiö, Juuso & Salo, Ahti, 2014. "Optimal strategies for selecting project portfolios using uncertain value estimates," European Journal of Operational Research, Elsevier, vol. 233(3), pages 772-783.
    9. Karantounias, Anastasios G., 2023. "Doubts about the model and optimal policy," Journal of Economic Theory, Elsevier, vol. 210(C).
    10. Borovička, Jaroslav & Hansen, Lars Peter, 2014. "Examining macroeconomic models through the lens of asset pricing," Journal of Econometrics, Elsevier, vol. 183(1), pages 67-90.
    11. Makam, Vaishno Devi & Millossovich, Pietro & Tsanakas, Andreas, 2021. "Sensitivity analysis with χ2-divergences," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 372-383.
    12. Paul Ehling & Michael Gallmeyer & Sanjay Srivastava & Stathis Tompaidis & Chunyu Yang, 2018. "Portfolio Tax Trading with Carryover Losses," Management Science, INFORMS, vol. 64(9), pages 4156-4176, September.
    13. Rutger-Jan Lange & Coen N. Teulings, 2021. "The option value of vacant land: Don't build when demand for housing is booming," Tinbergen Institute Discussion Papers 21-022/IV, Tinbergen Institute.
    14. Giorgia Callegaro & Alessandro Gnoatto & Martino Grasselli, 2021. "A Fully Quantization-based Scheme for FBSDEs," Working Papers 07/2021, University of Verona, Department of Economics.
    15. Zimper, Alexander, 2012. "Asset pricing in a Lucas fruit-tree economy with the best and worst in mind," Journal of Economic Dynamics and Control, Elsevier, vol. 36(4), pages 610-628.
    16. Peijnenburg, J.M.J. & Nijman, T.E. & Werker, B.J.M., 2010. "Optimal Annuitization with Incomplete Annuity Markets and Background Risk During Retirement," Other publications TiSEM 0b8e2130-a64a-48c1-97d6-8, Tilburg University, School of Economics and Management.
    17. Maria Demertzis, 2010. "An Operational Measure of Riskiness: A Comment," DNB Working Papers 262, Netherlands Central Bank, Research Department.
    18. Zineb El Filali Ech-Chafiq & Pierre Henry-Labordere & Jérôme Lelong, 2021. "Pricing Bermudan options using regression trees/random forests," Working Papers hal-03436046, HAL.
    19. Mauro Gaggero & Giorgio Gnecco & Marcello Sanguineti, 2013. "Dynamic Programming and Value-Function Approximation in Sequential Decision Problems: Error Analysis and Numerical Results," Journal of Optimization Theory and Applications, Springer, vol. 156(2), pages 380-416, February.
    20. Aït-Sahalia, Yacine & Matthys, Felix, 2019. "Robust consumption and portfolio policies when asset prices can jump," Journal of Economic Theory, Elsevier, vol. 179(C), pages 1-56.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1912.00244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.