IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2002.02604.html
   My bibliography  Save this paper

Time-inconsistent Markovian control problems under model uncertainty with application to the mean-variance portfolio selection

Author

Listed:
  • Tomasz R. Bielecki
  • Tao Chen
  • Igor Cialenco

Abstract

In this paper we study a class of time-inconsistent terminal Markovian control problems in discrete time subject to model uncertainty. We combine the concept of the sub-game perfect strategies with the adaptive robust stochastic to tackle the theoretical aspects of the considered stochastic control problem. Consequently, as an important application of the theoretical results, by applying a machine learning algorithm we solve numerically the mean-variance portfolio selection problem under the model uncertainty.

Suggested Citation

  • Tomasz R. Bielecki & Tao Chen & Igor Cialenco, 2020. "Time-inconsistent Markovian control problems under model uncertainty with application to the mean-variance portfolio selection," Papers 2002.02604, arXiv.org, revised Sep 2020.
  • Handle: RePEc:arx:papers:2002.02604
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2002.02604
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tomasz R. Bielecki & Igor Cialenco & Marcin Pitera, 2016. "A survey of time consistency of dynamic risk measures and dynamic performance measures in discrete time: LM-measure perspective," Papers 1603.09030, arXiv.org, revised Jan 2017.
    2. R. H. Strotz, 1955. "Myopia and Inconsistency in Dynamic Utility Maximization," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 23(3), pages 165-180.
    3. Lars Peter Hansen & Thomas J Sargent, 2014. "Robust Control and Model Misspecification," World Scientific Book Chapters, in: UNCERTAINTY WITHIN ECONOMIC MODELS, chapter 6, pages 155-216, World Scientific Publishing Co. Pte. Ltd..
    4. Tomas Björk & Agatha Murgoci, 2014. "A theory of Markovian time-inconsistent stochastic control in discrete time," Finance and Stochastics, Springer, vol. 18(3), pages 545-592, July.
    5. Tomasz R. Bielecki & Igor Cialenco & Marcin Pitera, 2018. "A Unified Approach to Time Consistency of Dynamic Risk Measures and Dynamic Performance Measures in Discrete Time," Mathematics of Operations Research, INFORMS, vol. 43(1), pages 204-221, February.
    6. Tao Chen & Michael Ludkovski, 2019. "A Machine Learning Approach to Adaptive Robust Utility Maximization and Hedging," Papers 1912.00244, arXiv.org, revised May 2020.
    7. Tomasz R. Bielecki & Igor Cialenco & Marcin Pitera, 2014. "A unified approach to time consistency of dynamic risk measures and dynamic performance measures in discrete time," Papers 1409.7028, arXiv.org, revised Sep 2017.
    8. Gilboa, Itzhak & Schmeidler, David, 1989. "Maxmin expected utility with non-unique prior," Journal of Mathematical Economics, Elsevier, vol. 18(2), pages 141-153, April.
    9. Yun Shi & Xiangyu Cui, 2017. "Time Inconsistency and Self-Control Optimization Problems: Progress and Challenges," International Series in Operations Research & Management Science, in: Tsan-Ming Choi & Jianjun Gao & James H. Lambert & Chi-Kong Ng & Jun Wang (ed.), Optimization and Control for Systems in the Big-Data Era, chapter 0, pages 33-42, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tao Chen & Jiyoun Myung, 2020. "Nonparametric Adaptive Bayesian Stochastic Control Under Model Uncertainty," Papers 2011.04804, arXiv.org, revised Mar 2022.
    2. Erhan Bayraktar & Tao Chen, 2023. "Data-Driven Non-Parametric Robust Control under Dependence Uncertainty," World Scientific Book Chapters, in: Robert A Jarrow & Dilip B Madan (ed.), Peter Carr Gedenkschrift Research Advances in Mathematical Finance, chapter 5, pages 141-178, World Scientific Publishing Co. Pte. Ltd..

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bingyan Han & Chi Seng Pun & Hoi Ying Wong, 2021. "Robust state-dependent mean–variance portfolio selection: a closed-loop approach," Finance and Stochastics, Springer, vol. 25(3), pages 529-561, July.
    2. Jin Ma & Ting-Kam Leonard Wong & Jianfeng Zhang, 2018. "Time-consistent conditional expectation under probability distortion," Papers 1809.08262, arXiv.org, revised Jun 2020.
    3. E. Kromer & L. Overbeck & K. Zilch, 2019. "Dynamic systemic risk measures for bounded discrete time processes," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 90(1), pages 77-108, August.
    4. Balter, Anne G. & Mahayni, Antje & Schweizer, Nikolaus, 2021. "Time-consistency of optimal investment under smooth ambiguity," European Journal of Operational Research, Elsevier, vol. 293(2), pages 643-657.
    5. Hansen, Lars Peter & Sargent, Thomas J., 2022. "Structured ambiguity and model misspecification," Journal of Economic Theory, Elsevier, vol. 199(C).
    6. Hansen, Lars Peter, 2013. "Uncertainty Outside and Inside Economic Models," Nobel Prize in Economics documents 2013-7, Nobel Prize Committee.
    7. Yu-Jui Huang & Adrien Nguyen-Huu, 2018. "Time-consistent stopping under decreasing impatience," Finance and Stochastics, Springer, vol. 22(1), pages 69-95, January.
    8. Fahrenwaldt, Matthias Albrecht & Jensen, Ninna Reitzel & Steffensen, Mogens, 2020. "Nonrecursive separation of risk and time preferences," Journal of Mathematical Economics, Elsevier, vol. 90(C), pages 95-108.
    9. Marciano Siniscalchi, 2009. "Vector Expected Utility and Attitudes Toward Variation," Econometrica, Econometric Society, vol. 77(3), pages 801-855, May.
    10. Galanis, S. & Ioannou, C. & Kotronis, S., 2019. "Information Aggregation Under Ambiguity: Theory and Experimental Evidence," Working Papers 20/05, Department of Economics, City University London.
    11. Aït-Sahalia, Yacine & Matthys, Felix, 2019. "Robust consumption and portfolio policies when asset prices can jump," Journal of Economic Theory, Elsevier, vol. 179(C), pages 1-56.
    12. Agliardi, Elettra & Xepapadeas, Anastasios, 2022. "Temperature targets, deep uncertainty and extreme events in the design of optimal climate policy," Journal of Economic Dynamics and Control, Elsevier, vol. 139(C).
    13. Anastasios G. Karantounias, 2009. "Ramsey Taxation and fear of misspecification," 2009 Meeting Papers 822, Society for Economic Dynamics.
    14. W. A. Brock & A. Xepapadeas, 2015. "Modeling Coupled Climate, Ecosystems, and Economic Systems," Working Papers 2015.66, Fondazione Eni Enrico Mattei.
    15. Marcel Nutz & Yuchong Zhang, 2019. "Conditional Optimal Stopping: A Time-Inconsistent Optimization," Papers 1901.05802, arXiv.org, revised Oct 2019.
    16. Ricardo J. Caballero & Arvind Krishnamurthy, 2008. "Collective Risk Management in a Flight to Quality Episode," Journal of Finance, American Finance Association, vol. 63(5), pages 2195-2230, October.
    17. Isaac Kleshchelski & Nicolas Vincent, 2007. "Robust Equilibrium Yield Curves," Cahiers de recherche 08-02, HEC Montréal, Institut d'économie appliquée.
    18. Condie, Scott & Ganguli, Jayant, 2017. "The pricing effects of ambiguous private information," Journal of Economic Theory, Elsevier, vol. 172(C), pages 512-557.
    19. Alfio Giarlotta & Angelo Petralia, 2024. "Simon’s bounded rationality," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 47(1), pages 327-346, June.
    20. Aryal, Gaurab & Stauber, Ronald, 2014. "A note on Kuhn’s Theorem with ambiguity averse players," Economics Letters, Elsevier, vol. 125(1), pages 110-114.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2002.02604. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.