IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1803.03573.html
   My bibliography  Save this paper

Bayesian mean-variance analysis: Optimal portfolio selection under parameter uncertainty

Author

Listed:
  • David Bauder
  • Taras Bodnar
  • Nestor Parolya
  • Wolfgang Schmid

Abstract

The paper solves the problem of optimal portfolio choice when the parameters of the asset returns distribution, like the mean vector and the covariance matrix are unknown and have to be estimated by using historical data of the asset returns. The new approach employs the Bayesian posterior predictive distribution which is the distribution of the future realization of the asset returns given the observable sample. The parameters of the posterior predictive distributions are functions of the observed data values and, consequently, the solution of the optimization problem is expressed in terms of data only and does not depend on unknown quantities. In contrast, the optimization problem of the traditional approach is based on unknown quantities which are estimated in the second step leading to a suboptimal solution. We also derive a very useful stochastic representation of the posterior predictive distribution whose application leads not only to the solution of the considered optimization problem, but provides the posterior predictive distribution of the optimal portfolio return used to construct a prediction interval. A Bayesian efficient frontier, a set of optimal portfolios obtained by employing the posterior predictive distribution, is constructed as well. Theoretically and using real data we show that the Bayesian efficient frontier outperforms the sample efficient frontier, a common estimator of the set of optimal portfolios known to be overoptimistic.

Suggested Citation

  • David Bauder & Taras Bodnar & Nestor Parolya & Wolfgang Schmid, 2018. "Bayesian mean-variance analysis: Optimal portfolio selection under parameter uncertainty," Papers 1803.03573, arXiv.org.
  • Handle: RePEc:arx:papers:1803.03573
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1803.03573
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jorion, Philippe, 1986. "Bayes-Stein Estimation for Portfolio Analysis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 21(3), pages 279-292, September.
    2. Raymond Kan & Daniel R. Smith, 2008. "The Distribution of the Sample Minimum-Variance Frontier," Management Science, INFORMS, vol. 54(7), pages 1364-1380, July.
    3. Doron Avramov & Guofu Zhou, 2010. "Bayesian Portfolio Analysis," Annual Review of Financial Economics, Annual Reviews, vol. 2(1), pages 25-47, December.
    4. Best, Michael J & Grauer, Robert R, 1991. "On the Sensitivity of Mean-Variance-Efficient Portfolios to Changes in Asset Means: Some Analytical and Computational Results," The Review of Financial Studies, Society for Financial Studies, vol. 4(2), pages 315-342.
    5. Okhrin, Yarema & Schmid, Wolfgang, 2006. "Distributional properties of portfolio weights," Journal of Econometrics, Elsevier, vol. 134(1), pages 235-256, September.
    6. Klein, Roger W. & Bawa, Vijay S., 1976. "The effect of estimation risk on optimal portfolio choice," Journal of Financial Economics, Elsevier, vol. 3(3), pages 215-231, June.
    7. Tu, Jun & Zhou, Guofu, 2010. "Incorporating Economic Objectives into Bayesian Priors: Portfolio Choice under Parameter Uncertainty," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 45(4), pages 959-986, August.
    8. Bodnar, Taras & Mazur, Stepan & Okhrin, Yarema, 2017. "Bayesian estimation of the global minimum variance portfolio," European Journal of Operational Research, Elsevier, vol. 256(1), pages 292-307.
    9. MacKinlay, A Craig & Pastor, Lubos, 2000. "Asset Pricing Models: Implications for Expected Returns and Portfolio Selection," The Review of Financial Studies, Society for Financial Studies, vol. 13(4), pages 883-916.
    10. Pastor, Lubos & Stambaugh, Robert F., 2000. "Comparing asset pricing models: an investment perspective," Journal of Financial Economics, Elsevier, vol. 56(3), pages 335-381, June.
    11. Barry, Christopher B, 1974. "Portfolio Analysis under Uncertain Means, Variances, and Covariances," Journal of Finance, American Finance Association, vol. 29(2), pages 515-522, May.
    12. Stambaugh, Robert F., 1997. "Analyzing investments whose histories differ in length," Journal of Financial Economics, Elsevier, vol. 45(3), pages 285-331, September.
    13. Aguilar, Omar & West, Mike, 2000. "Bayesian Dynamic Factor Models and Portfolio Allocation," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 338-357, July.
    14. Frost, Peter A. & Savarino, James E., 1986. "An Empirical Bayes Approach to Efficient Portfolio Selection," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 21(3), pages 293-305, September.
    15. Kan, Raymond & Zhou, Guofu, 2007. "Optimal Portfolio Choice with Parameter Uncertainty," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 42(3), pages 621-656, September.
    16. Merton, Robert C., 1972. "An Analytic Derivation of the Efficient Portfolio Frontier," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 7(4), pages 1851-1872, September.
    17. Olha Bodnar & Taras Bodnar, 2010. "On The Unbiased Estimator Of The Efficient Frontier," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 13(07), pages 1065-1073.
    18. Merton, Robert C., 1980. "On estimating the expected return on the market : An exploratory investigation," Journal of Financial Economics, Elsevier, vol. 8(4), pages 323-361, December.
    19. Taras Bodnar & Wolfgang Schmid, 2009. "Econometrical analysis of the sample efficient frontier," The European Journal of Finance, Taylor & Francis Journals, vol. 15(3), pages 317-335.
    20. Andrew F. Siegel & Artemiza Woodgate, 2007. "Performance of Portfolios Optimized with Estimation Error," Management Science, INFORMS, vol. 53(6), pages 1005-1015, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fuertes, Ana-Maria & Zhao, Nan, 2023. "A Bayesian perspective on commodity style integration," Journal of Commodity Markets, Elsevier, vol. 30(C).
    2. Bodnar, Olha & Bodnar, Taras & Parolya, Nestor, 2022. "Recent advances in shrinkage-based high-dimensional inference," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    3. Shubhangi Sikaria & Rituparna Sen & Neelesh S. Upadhye, 2019. "Bayesian Filtering for Multi-period Mean-Variance Portfolio Selection," Papers 1911.07526, arXiv.org, revised Aug 2020.
    4. Carmine De Franco & Johann Nicolle & Huyên Pham, 2019. "Bayesian Learning For The Markowitz Portfolio Selection Problem," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(07), pages 1-40, November.
    5. Gian Paolo Clemente & Rosanna Grassi & Asmerilda Hitaj, 2019. "Smart network based portfolios," Papers 1907.01274, arXiv.org.
    6. Bodnar, Taras & Mazur, Stepan & Nguyen, Hoang, 2022. "Estimation of optimal portfolio compositions for small sampleand singular covariance matrix," Working Papers 2022:15, Örebro University, School of Business.
    7. Trichilli, Yousra & Abbes, Mouna Boujelbène & Masmoudi, Afif, 2020. "Islamic and conventional portfolios optimization under investor sentiment states: Bayesian vs Markowitz portfolio analysis," Research in International Business and Finance, Elsevier, vol. 51(C).
    8. Taras Bodnar & Mathias Lindholm & Erik Thorsén & Joanna Tyrcha, 2021. "Quantile-based optimal portfolio selection," Computational Management Science, Springer, vol. 18(3), pages 299-324, July.
    9. Taras Bodnar & Vilhelm Niklasson & Erik Thors'en, 2022. "Volatility Sensitive Bayesian Estimation of Portfolio VaR and CVaR," Papers 2205.01444, arXiv.org.
    10. Carmine de Franco & Johann Nicolle & Huyên Pham, 2018. "Bayesian learning for the Markowitz portfolio selection problem," Working Papers hal-01923917, HAL.
    11. Carmine De Franco & Johann Nicolle & Huy^en Pham, 2018. "Bayesian learning for the Markowitz portfolio selection problem," Papers 1811.06893, arXiv.org.
    12. Gian Paolo Clemente & Rosanna Grassi & Asmerilda Hitaj, 2022. "Smart network based portfolios," Annals of Operations Research, Springer, vol. 316(2), pages 1519-1541, September.
    13. Bodnar, Taras & Lindholm, Mathias & Niklasson, Vilhelm & Thorsén, Erik, 2022. "Bayesian portfolio selection using VaR and CVaR," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    14. Taras Bodnar & Mathias Lindholm & Vilhelm Niklasson & Erik Thors'en, 2020. "Bayesian Quantile-Based Portfolio Selection," Papers 2012.01819, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taras Bodnar & Mathias Lindholm & Vilhelm Niklasson & Erik Thors'en, 2020. "Bayesian Quantile-Based Portfolio Selection," Papers 2012.01819, arXiv.org.
    2. Bodnar, Taras & Lindholm, Mathias & Niklasson, Vilhelm & Thorsén, Erik, 2022. "Bayesian portfolio selection using VaR and CVaR," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    3. Bodnar, Taras & Mazur, Stepan & Okhrin, Yarema, 2017. "Bayesian estimation of the global minimum variance portfolio," European Journal of Operational Research, Elsevier, vol. 256(1), pages 292-307.
    4. Carmine De Franco & Johann Nicolle & Huyên Pham, 2019. "Dealing with Drift Uncertainty: A Bayesian Learning Approach," Risks, MDPI, vol. 7(1), pages 1-18, January.
    5. Bauder, David & Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2020. "Bayesian inference of the multi-period optimal portfolio for an exponential utility," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
    6. Yuanyuan Zhang & Xiang Li & Sini Guo, 2018. "Portfolio selection problems with Markowitz’s mean–variance framework: a review of literature," Fuzzy Optimization and Decision Making, Springer, vol. 17(2), pages 125-158, June.
    7. Penaranda, Francisco, 2007. "Portfolio choice beyond the traditional approach," LSE Research Online Documents on Economics 24481, London School of Economics and Political Science, LSE Library.
    8. Lorenzo Garlappi & Raman Uppal & Tan Wang, 2007. "Portfolio Selection with Parameter and Model Uncertainty: A Multi-Prior Approach," The Review of Financial Studies, Society for Financial Studies, vol. 20(1), pages 41-81, January.
    9. Johannes Bock, 2018. "An updated review of (sub-)optimal diversification models," Papers 1811.08255, arXiv.org.
    10. Bodnar, Olha & Bodnar, Taras & Niklasson, Vilhelm, 2024. "Constructing Bayesian tangency portfolios under short-selling restrictions," Finance Research Letters, Elsevier, vol. 62(PA).
    11. Carmine De Franco & Johann Nicolle & Huy^en Pham, 2018. "Bayesian learning for the Markowitz portfolio selection problem," Papers 1811.06893, arXiv.org.
    12. Kellerer, Belinda, 2019. "Portfolio Optimization and Ambiguity Aversion," Junior Management Science (JUMS), Junior Management Science e. V., vol. 4(3), pages 305-338.
    13. Huang, Hung-Hsi & Lin, Shin-Hung & Wang, Ching-Ping & Chiu, Chia-Yung, 2014. "Adjusting MV-efficient portfolio frontier bias for skewed and non-mesokurtic returns," The North American Journal of Economics and Finance, Elsevier, vol. 29(C), pages 59-83.
    14. Carmine de Franco & Johann Nicolle & Huyên Pham, 2018. "Bayesian learning for the Markowitz portfolio selection problem," Working Papers hal-01923917, HAL.
    15. Carmine De Franco & Johann Nicolle & Huyên Pham, 2019. "Bayesian Learning For The Markowitz Portfolio Selection Problem," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(07), pages 1-40, November.
    16. Tu, Jun & Zhou, Guofu, 2011. "Markowitz meets Talmud: A combination of sophisticated and naive diversification strategies," Journal of Financial Economics, Elsevier, vol. 99(1), pages 204-215, January.
    17. Bodnar, Taras & Mazur, Stepan & Nguyen, Hoang, 2022. "Estimation of optimal portfolio compositions for small sampleand singular covariance matrix," Working Papers 2022:15, Örebro University, School of Business.
    18. Taras Bodnar & Holger Dette & Nestor Parolya & Erik Thors'en, 2019. "Sampling Distributions of Optimal Portfolio Weights and Characteristics in Low and Large Dimensions," Papers 1908.04243, arXiv.org, revised Apr 2023.
    19. Frank Fabozzi & Dashan Huang & Guofu Zhou, 2010. "Robust portfolios: contributions from operations research and finance," Annals of Operations Research, Springer, vol. 176(1), pages 191-220, April.
    20. David Bauder & Taras Bodnar & Stepan Mazur & Yarema Okhrin, 2018. "Bayesian Inference For The Tangent Portfolio," Journal of Enterprising Culture (JEC), World Scientific Publishing Co. Pte. Ltd., vol. 21(08), pages 1-27, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1803.03573. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.