IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1908.08127.html
   My bibliography  Save this paper

Forecasting e-scooter substitution of direct and access trips by mode and distance

Author

Listed:
  • Mina Lee
  • Joseph Y. J. Chow
  • Gyugeun Yoon
  • Brian Yueshuai He

Abstract

An e-scooter trip model is estimated from four U.S. cities: Portland, Austin, Chicago and New York City. A log-log regression model is estimated for e-scooter trips based on user age, population, land area, and the number of scooters. The model predicts 75K daily e-scooter trips in Manhattan for a deployment of 2000 scooters, which translates to 77 million USD in annual revenue. We propose a novel nonlinear, multifactor model to break down the number of daily trips by the alternative modes of transportation that they would likely substitute based on statistical similarity. The model parameters reveal a relationship with direct trips of bike, walk, carpool, automobile and taxi as well as access/egress trips with public transit in Manhattan. Our model estimates that e-scooters could replace 32% of carpool; 13% of bike; and 7.2% of taxi trips. The distance structure of revenue from access/egress trips is found to differ from that of other substituted trips.

Suggested Citation

  • Mina Lee & Joseph Y. J. Chow & Gyugeun Yoon & Brian Yueshuai He, 2019. "Forecasting e-scooter substitution of direct and access trips by mode and distance," Papers 1908.08127, arXiv.org, revised Apr 2021.
  • Handle: RePEc:arx:papers:1908.08127
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1908.08127
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Griswold, Julia B. & Medury, Aditya & Schneider, Robert J., 2011. "Pilot Models for Estimating Bicycle Intersection Volumes," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt380855q6, Institute of Transportation Studies, UC Berkeley.
    2. Shaheen, Susan & Guzman, Stacey & Zhang, Hua, 2010. "Bikesharing in Europe, the Americas, and Asia: Past, Present, and Future," Institute of Transportation Studies, Working Paper Series qt79v822k5, Institute of Transportation Studies, UC Davis.
    3. Vincent Chakour & Naveen Eluru, 2014. "Analyzing commuter train user behavior: a decision framework for access mode and station choice," Transportation, Springer, vol. 41(1), pages 211-228, January.
    4. Geng, Jichao & Long, Ruyin & Chen, Hong, 2016. "Impact of information intervention on travel mode choice of urban residents with different goal frames: A controlled trial in Xuzhou, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 91(C), pages 134-147.
    5. Shaheen, Susan A & Guzman, Stacey & Zhang, Hua, 2010. "Bikesharing in Europe, the Americas, and Asia: Past, Present and Future," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6qg8q6ft, Institute of Transportation Studies, UC Berkeley.
    6. Djavadian, Shadi & Chow, Joseph Y.J., 2017. "An agent-based day-to-day adjustment process for modeling ‘Mobility as a Service’ with a two-sided flexible transport market," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 36-57.
    7. Yang, Liya & Shen, Qing & Li, Zhibin, 2016. "Comparing travel mode and trip chain choices between holidays and weekdays," Transportation Research Part A: Policy and Practice, Elsevier, vol. 91(C), pages 273-285.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Monika Hamerska & Monika Ziółko & Patryk Stawiarski, 2022. "A Sustainable Transport System—The MMQUAL Model of Shared Micromobility Service Quality Assessment," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
    2. Jin, Scarlett T. & Sui, Daniel Z., 2024. "A comparative analysis of the spatial determinants of e-bike and e-scooter sharing link flows," Journal of Transport Geography, Elsevier, vol. 119(C).
    3. Li, Qiumeng & Fuerst, Franz & Luca, Davide, 2023. "Do shared E-bikes reduce urban carbon emissions?," Journal of Transport Geography, Elsevier, vol. 112(C).
    4. Yunus Emre Ayözen, 2023. "Statistical Optimization of E-Scooter Micro-Mobility Utilization in Postal Service," Energies, MDPI, vol. 16(3), pages 1-25, January.
    5. Ouassim Manout & Azise Oumar Diallo & Thibault Gloriot, 2023. "Implications of pricing and fleet size strategies on shared bikes and e-scooters: a case study from Lyon, France," Working Papers hal-04017908, HAL.
    6. Abouelela, Mohamed & Chaniotakis, Emmanouil & Antoniou, Constantinos, 2023. "Understanding the landscape of shared-e-scooters in North America; Spatiotemporal analysis and policy insights," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).
    7. Shiva Pourfalatoun & Jubaer Ahmed & Erika E. Miller, 2023. "Shared Electric Scooter Users and Non-Users: Perceptions on Safety, Adoption and Risk," Sustainability, MDPI, vol. 15(11), pages 1-15, June.
    8. Jurgis Zagorskas & Marija Burinskienė, 2019. "Challenges Caused by Increased Use of E-Powered Personal Mobility Vehicles in European Cities," Sustainability, MDPI, vol. 12(1), pages 1-13, December.
    9. Marco Diana & Andrea Chicco, 2023. "The effect of COVID restriction levels on shared micromobility travel patterns: A comparison between dockless bike sharing and e-scooter services," Papers 2309.16440, arXiv.org.
    10. Alexandra König & Laura Gebhardt & Kerstin Stark & Julia Schuppan, 2022. "A Multi-Perspective Assessment of the Introduction of E-Scooter Sharing in Germany," Sustainability, MDPI, vol. 14(5), pages 1-16, February.
    11. Krauss, Konstantin & Gnann, Till & Burgert, Tobias & Axhausen, Kay W., 2024. "Faster, greener, scooter? An assessment of shared e-scooter usage based on real-world driving data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).
    12. Jin, Scarlett T. & Wang, Lei & Sui, Daniel, 2023. "How the built environment affects E-scooter sharing link flows: A machine learning approach," Journal of Transport Geography, Elsevier, vol. 112(C).
    13. Draženko Glavić & Marina Milenković & Aleksandar Trifunović & Igor Jokanović & Jelica Komarica, 2023. "Influence of Dockless Shared E-Scooters on Urban Mobility: WTP and Modal Shift," Sustainability, MDPI, vol. 15(12), pages 1-17, June.
    14. Rickie Mae Gaspar & Yogi Tri Prasetyo & Klint Allen Mariñas & Satria Fadil Persada & Reny Nadlifatin, 2023. "Exploring Consumers’ Intention to Use Bikes and E-Scooters during the COVID-19 Pandemic in the Philippines: An Extended Theory of Planned Behavior Approach with a Consideration of Pro-Environmental Id," Sustainability, MDPI, vol. 15(6), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Faghih-Imani, Ahmadreza & Eluru, Naveen, 2016. "A Latent Segmentation Multinomial Logit Approach to Examine Bicycle Sharing System Users' Destination Preferences," 57th Transportation Research Forum (51st CTRF) Joint Conference, Toronto, Ontario, May 1-4, 2016 319270, Transportation Research Forum.
    2. Ma, Xinwei & Zhang, Shuai & Wu, Tao & Yang, Yizhe & Yu, Jiajie, 2023. "Can dockless and docked bike-sharing substitute each other? Evidence from Nanjing, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    3. Faghih-Imani, Ahmadreza & Eluru, Naveen, 2015. "Analysing bicycle-sharing system user destination choice preferences: Chicago’s Divvy system," Journal of Transport Geography, Elsevier, vol. 44(C), pages 53-64.
    4. Gu, Tianqi & Kim, Inhi & Currie, Graham, 2019. "To be or not to be dockless: Empirical analysis of dockless bikeshare development in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 122-147.
    5. Pucher, John & Buehler, Ralph & Seinen, Mark, 2011. "Bicycling renaissance in North America? An update and re-appraisal of cycling trends and policies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(6), pages 451-475, July.
    6. Yu Du & Xian Ji & Chenxi Dou & Rui Wang, 2024. "Boosting Winter Green Travel: Prioritizing Built Environment Enhancements for Shared Bike Users Accessing Public Transit in the First/Last Mile Using Machine Learning and Grounded Theory," Sustainability, MDPI, vol. 16(22), pages 1-25, November.
    7. Alexandros Nikitas, 2019. "How to Save Bike-Sharing: An Evidence-Based Survival Toolkit for Policy-Makers and Mobility Providers," Sustainability, MDPI, vol. 11(11), pages 1-17, June.
    8. Tomasz Bieliński & Łukasz Dopierała & Maciej Tarkowski & Agnieszka Ważna, 2020. "Lessons from Implementing a Metropolitan Electric Bike Sharing System," Energies, MDPI, vol. 13(23), pages 1-21, November.
    9. Levy, Nadav & Golani, Chen & Ben-Elia, Eran, 2019. "An exploratory study of spatial patterns of cycling in Tel Aviv using passively generated bike-sharing data," Journal of Transport Geography, Elsevier, vol. 76(C), pages 325-334.
    10. Hyungkyoo Kim, 2020. "Seasonal Impacts of Particulate Matter Levels on Bike Sharing in Seoul, South Korea," IJERPH, MDPI, vol. 17(11), pages 1-17, June.
    11. Zhou, Xiaolu & Wang, Mingshu & Li, Dongying, 2019. "Bike-sharing or taxi? Modeling the choices of travel mode in Chicago using machine learning," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    12. Wang, Xize & Lindsey, Greg & Schoner, Jessica E. & Harrison, Andrew, 2016. "Modeling bike share station activity: Effects of nearby businesses and jobs on trips to and from stations," SocArXiv stav4, Center for Open Science.
    13. Chrysa Vizmpa & George Botzoris & Panagiotis Lemonakis & Athanasios Galanis, 2023. "Micromobility in Urban Trail Paths: Expanding and Strengthening the Planning of 15-Minute Cities," Land, MDPI, vol. 12(12), pages 1-22, December.
    14. Virginie Boutueil & Luc Nemett & Thomas Quillerier, 2021. "Trends in Competition among Digital Platforms for Shared Mobility: Insights from a Worldwide Census and Prospects for Research," Post-Print hal-03388213, HAL.
    15. Mohammed Elhenawy & Hesham A. Rakha & Youssef Bichiou & Mahmoud Masoud & Sebastien Glaser & Jack Pinnow & Ahmed Stohy, 2021. "A Feasible Solution for Rebalancing Large-Scale Bike Sharing Systems," Sustainability, MDPI, vol. 13(23), pages 1-19, December.
    16. Shahram Heydari & Garyfallos Konstantinoudis & Abdul Wahid Behsoodi, 2021. "Effect of the COVID-19 pandemic on bike-sharing demand and hire time: Evidence from Santander Cycles in London," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-16, December.
    17. Parkes, Stephen & Mardsen, Greg & Shaheen, Susan PhD & Cohen, Adam, 2013. "Understanding the Diffusion of Public Bikesharing Systems: Evidence from Europe and North America," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3qr9h2pr, Institute of Transportation Studies, UC Berkeley.
    18. Younes, Hannah & Nasri, Arefeh & Baiocchi, Giovanni & Zhang, Lei, 2019. "How transit service closures influence bikesharing demand; lessons learned from SafeTrack project in Washington, D.C. metropolitan area," Journal of Transport Geography, Elsevier, vol. 76(C), pages 83-92.
    19. Alain Quilliot & Antoine Sarbinowski & Hélène Toussaint, 2021. "Vehicle driven approaches for non preemptive vehicle relocation with integrated quality criterion in a vehicle sharing system," Annals of Operations Research, Springer, vol. 298(1), pages 445-468, March.
    20. Fukushige, Tatsuya & Fitch, Dillon T. & Handy, Susan, 2022. "Can an Incentive-Based approach to rebalancing a Dock-less Bike-share system Work? Evidence from Sacramento, California," Transportation Research Part A: Policy and Practice, Elsevier, vol. 163(C), pages 181-194.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1908.08127. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.