IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2019i1p273-d303106.html
   My bibliography  Save this article

Challenges Caused by Increased Use of E-Powered Personal Mobility Vehicles in European Cities

Author

Listed:
  • Jurgis Zagorskas

    (Department of Roads, Vilnius Gediminas Technical University, Saulėtekio al. 11, 2510 Vilnius, Lithuania)

  • Marija Burinskienė

    (Department of Roads, Vilnius Gediminas Technical University, Saulėtekio al. 11, 2510 Vilnius, Lithuania)

Abstract

Increased use of e-powered personal mobility vehicles is usually considered to be a positive change, while it is generally agreed that Personal Mobility Vehicles (PMVs) effectively and efficiently reduce the negative environmental impacts of transport and improve quality of life. There has been great technological progress made by all sectors in the field of personal mobility during the last decade. The use of PMVs for micro-mobility have been welcomed by the market, consumers, and governments and thus they are becoming increasingly popular in modern European society. New technology-driven PMVs provide opportunities to their users, but at the same time create problems with street space sharing, road safety, and traffic offenses. This study gives an overview of recent types of PMVs, offers some insights into upcoming changes and challenges, and raises a discussion on themes related to the increased use of e-powered personal transporters.

Suggested Citation

  • Jurgis Zagorskas & Marija Burinskienė, 2019. "Challenges Caused by Increased Use of E-Powered Personal Mobility Vehicles in European Cities," Sustainability, MDPI, vol. 12(1), pages 1-13, December.
  • Handle: RePEc:gam:jsusta:v:12:y:2019:i:1:p:273-:d:303106
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/1/273/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/1/273/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elliot Fishman & Christopher Cherry, 2016. "E-bikes in the Mainstream: Reviewing a Decade of Research," Transport Reviews, Taylor & Francis Journals, vol. 36(1), pages 72-91, January.
    2. Gabriele Prati & Víctor Marín Puchades & Marco De Angelis & Federico Fraboni & Luca Pietrantoni, 2018. "Factors contributing to bicycle–motorised vehicle collisions: a systematic literature review," Transport Reviews, Taylor & Francis Journals, vol. 38(2), pages 184-208, March.
    3. H. M. Abdul Aziz & Nicholas N. Nagle & April M. Morton & Michael R. Hilliard & Devin A. White & Robert N. Stewart, 2018. "Exploring the impact of walk–bike infrastructure, safety perception, and built-environment on active transportation mode choice: a random parameter model using New York City commuter data," Transportation, Springer, vol. 45(5), pages 1207-1229, September.
    4. Stefan Gössling & Andreas Humpe & Todd Litman & Daniel Metzler, 2019. "Effects of Perceived Traffic Risks, Noise, and Exhaust Smells on Bicyclist Behaviour: An Economic Evaluation," Sustainability, MDPI, vol. 11(2), pages 1-15, January.
    5. Park, Yujin & Akar, Gulsah, 2019. "Why do bicyclists take detours? A multilevel regression model using smartphone GPS data," Journal of Transport Geography, Elsevier, vol. 74(C), pages 191-200.
    6. Zhang, Yongping & Mi, Zhifu, 2018. "Environmental benefits of bike sharing: A big data-based analysis," Applied Energy, Elsevier, vol. 220(C), pages 296-301.
    7. Juying Zeng, 2018. "Fostering path of ecological sustainable entrepreneurship within big data network system," International Entrepreneurship and Management Journal, Springer, vol. 14(1), pages 79-95, March.
    8. Majumdar, Bandhan Bandhu & Mitra, Sudeshna, 2018. "Analysis of bicycle route-related improvement strategies for two Indian cities using a stated preference survey," Transport Policy, Elsevier, vol. 63(C), pages 176-188.
    9. Ehrgott, Matthias & Wang, Judith Y.T. & Raith, Andrea & van Houtte, Chris, 2012. "A bi-objective cyclist route choice model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(4), pages 652-663.
    10. Rossetti, Tomás & Guevara, C. Angelo & Galilea, Patricia & Hurtubia, Ricardo, 2018. "Modeling safety as a perceptual latent variable to assess cycling infrastructure," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 252-265.
    11. Mina Lee & Joseph Y. J. Chow & Gyugeun Yoon & Brian Yueshuai He, 2019. "Forecasting e-scooter substitution of direct and access trips by mode and distance," Papers 1908.08127, arXiv.org, revised Apr 2021.
    12. Geoffrey Rose, 2012. "E-bikes and urban transportation: emerging issues and unresolved questions," Transportation, Springer, vol. 39(1), pages 81-96, January.
    13. Owain James & J I Swiderski & John Hicks & Denis Teoman & Ralph Buehler, 2019. "Pedestrians and E-Scooters: An Initial Look at E-Scooter Parking and Perceptions by Riders and Non-Riders," Sustainability, MDPI, vol. 11(20), pages 1-13, October.
    14. Margarita Martínez-Díaz & Francesc Soriguera & Ignacio Pérez, 2018. "Technology: A Necessary but Not Sufficient Condition for Future Personal Mobility," Sustainability, MDPI, vol. 10(11), pages 1-24, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabriel Dias & Elisabete Arsenio & Paulo Ribeiro, 2021. "The Role of Shared E-Scooter Systems in Urban Sustainability and Resilience during the Covid-19 Mobility Restrictions," Sustainability, MDPI, vol. 13(13), pages 1-19, June.
    2. Laa, Barbara & Leth, Ulrich, 2020. "Survey of E-scooter users in Vienna: Who they are and how they ride," Journal of Transport Geography, Elsevier, vol. 89(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ziwen Ling & Christopher R. Cherry & John H. MacArthur & Jonathan X. Weinert, 2017. "Differences of Cycling Experiences and Perceptions between E-Bike and Bicycle Users in the United States," Sustainability, MDPI, vol. 9(9), pages 1-18, September.
    2. Gu, Tianqi & Kim, Inhi & Currie, Graham, 2019. "To be or not to be dockless: Empirical analysis of dockless bikeshare development in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 122-147.
    3. Alexandra König & Laura Gebhardt & Kerstin Stark & Julia Schuppan, 2022. "A Multi-Perspective Assessment of the Introduction of E-Scooter Sharing in Germany," Sustainability, MDPI, vol. 14(5), pages 1-16, February.
    4. Zhang, Xiang & Li, Wence, 2023. "Effects of a bike sharing system and COVID-19 on low-carbon traffic modal shift and emission reduction," Transport Policy, Elsevier, vol. 132(C), pages 42-64.
    5. Wafa Elias & Victoria Gitelman, 2018. "Youngsters’ Opinions and Attitudes toward the Use of Electric Bicycles in Israel," Sustainability, MDPI, vol. 10(12), pages 1-16, November.
    6. Krauss, Konstantin & Gnann, Till & Burgert, Tobias & Axhausen, Kay W., 2024. "Faster, greener, scooter? An assessment of shared e-scooter usage based on real-world driving data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).
    7. Liu, Yixiao & Tian, Zihao & Pan, Baoran & Zhang, Wenbin & Liu, Yunqi & Tian, Lixin, 2022. "A hybrid big-data-based and tolerance-based method to estimate environmental benefits of electric bike sharing," Applied Energy, Elsevier, vol. 315(C).
    8. Mix, Richard & Hurtubia, Ricardo & Raveau, Sebastián, 2022. "Optimal location of bike-sharing stations: A built environment and accessibility approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 126-142.
    9. Jadwiga Biegańska & Elżbieta Grzelak-Kostulska & Michał Adam Kwiatkowski, 2021. "A Typology of Attitudes towards the E-Bike against the Background of the Traditional Bicycle and the Car," Energies, MDPI, vol. 14(24), pages 1-21, December.
    10. Li, Qiumeng & Fuerst, Franz & Luca, Davide, 2023. "Do shared E-bikes reduce urban carbon emissions?," Journal of Transport Geography, Elsevier, vol. 112(C).
    11. Shiva Pourfalatoun & Jubaer Ahmed & Erika E. Miller, 2023. "Shared Electric Scooter Users and Non-Users: Perceptions on Safety, Adoption and Risk," Sustainability, MDPI, vol. 15(11), pages 1-15, June.
    12. van Lierop, D. & Soemers, J. & Hoeke, L. & Liu, G. & Chen, Z. & Ettema, D. & Kruijf, J., 2020. "Wayfinding for cycle highways: Assessing e-bike users' experiences with wayfinding along a cycle highway in the Netherlands," Journal of Transport Geography, Elsevier, vol. 88(C).
    13. Laa, Barbara & Leth, Ulrich, 2020. "Survey of E-scooter users in Vienna: Who they are and how they ride," Journal of Transport Geography, Elsevier, vol. 89(C).
    14. Franklin Oliveira & Dilan Nery & Daniel G. Costa & Ivanovitch Silva & Luciana Lima, 2021. "A Survey of Technologies and Recent Developments for Sustainable Smart Cycling," Sustainability, MDPI, vol. 13(6), pages 1-28, March.
    15. Zhang, Yongping & Lin, Diao & Liu, Xiaoyue Cathy, 2019. "Biking islands in cities: An analysis combining bike trajectory and percolation theory," Journal of Transport Geography, Elsevier, vol. 80(C).
    16. Cubells, Jerònia & Miralles-Guasch, Carme & Marquet, Oriol, 2023. "E-scooter and bike-share route choice and detours: Modelling the influence of built environment and sociodemographic factors," Journal of Transport Geography, Elsevier, vol. 111(C).
    17. Jenkins, Michael & Lustosa, Lucio & Chia, Victoria & Wildish, Sarah & Tan, Maria & Hoornweg, Daniel & Lloyd, Meghann & Dogra, Shilpa, 2022. "What do we know about pedal assist E-bikes? A scoping review to inform future directions," Transport Policy, Elsevier, vol. 128(C), pages 25-37.
    18. Anat Meir, 2022. "Can Complete-Novice E-Bike Riders Be Trained to Detect Unmaterialized Traffic Hazards in the Urban Environment? An Exploratory Study," Sustainability, MDPI, vol. 14(17), pages 1-21, August.
    19. Yanqun Yang & Linwei Wang & Said M. Easa & Xinyi Zheng, 2022. "Analysis of Electric Bicycle Riders’ Use of Mobile Phones While Riding on Campus," IJERPH, MDPI, vol. 19(10), pages 1-15, May.
    20. Hui Bi & Zhirui Ye & He Zhu, 2024. "Mining bike sharing trip record data: a closer examination of the operating performance at station level," Transportation, Springer, vol. 51(3), pages 1015-1041, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2019:i:1:p:273-:d:303106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.