IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i7p4168-d784346.html
   My bibliography  Save this article

A Sustainable Transport System—The MMQUAL Model of Shared Micromobility Service Quality Assessment

Author

Listed:
  • Monika Hamerska

    (Department of International Management, Cracow University of Economics, ul. Rakowicka 27, 31-570 Cracow, Poland)

  • Monika Ziółko

    (Department of International Management, Cracow University of Economics, ul. Rakowicka 27, 31-570 Cracow, Poland)

  • Patryk Stawiarski

    (Department of International Management, Cracow University of Economics, ul. Rakowicka 27, 31-570 Cracow, Poland)

Abstract

Shared micromobility is a new phenomenon being observed in urban transport. It is a response to the problems associated with congestion and environmental pollution. Small electric vehicles such as e-scooters are highly suitable for crowded city centres, often providing an alternative to private motor vehicles or public transport, and serve as a good first- and last-mile transport option. While they have become a feature of sustainable transport systems in cities, their impact on the environment often depends on the services offered by operators of this mode of personal transport. There are many tools available to measure the quality of transport, e-services and shared mobility services. However, no specific mechanism has been designed for vehicles in the field of shared e-scooters (research gap). The aim of the article is to verify whether the three dimensions identified by the authors: mobile application functions, device features, and customer service are valid for examining the quality of shared e-micromobility factors on the example of e-scooters. Based on the obtained results, the authors created the MMQUAL (MicroMobility QUALity) model, which accurately describes the quality of the studied phenomenon. The results of the study can serve as a platform for researchers interested in further exploring the issue and improving the proposed model. They may also be of commercial value to operators, who could use this tool to boost the competitiveness of their services by enhancing those features that have the greatest impact on their quality.

Suggested Citation

  • Monika Hamerska & Monika Ziółko & Patryk Stawiarski, 2022. "A Sustainable Transport System—The MMQUAL Model of Shared Micromobility Service Quality Assessment," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:7:p:4168-:d:784346
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/7/4168/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/7/4168/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Georgia Apostolou & Angèle Reinders & Karst Geurs, 2018. "An Overview of Existing Experiences with Solar-Powered E-Bikes," Energies, MDPI, vol. 11(8), pages 1-20, August.
    2. Fitt, Helen & Curl, Angela, 2020. "The early days of shared micromobility: A social practices approach," Journal of Transport Geography, Elsevier, vol. 86(C).
    3. Paula Brezovec & Nina Hampl, 2021. "Electric Vehicles Ready for Breakthrough in MaaS? Consumer Adoption of E-Car Sharing and E-Scooter Sharing as a Part of Mobility-as-a-Service (MaaS)," Energies, MDPI, vol. 14(4), pages 1-25, February.
    4. Ahmed, Tanjeeb & Hyland, Michael & Sarma, Navjyoth J.S. & Mitra, Suman & Ghaffar, Arash, 2020. "Quantifying the employment accessibility benefits of shared automated vehicle mobility services: Consumer welfare approach using logsums," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 221-247.
    5. Ali Ramezani Ghotbabadi & Setareh Feiz & Rohaizat Baharun, 2015. "Service Quality Measurements: A Review," International Journal of Academic Research in Business and Social Sciences, Human Resource Management Academic Research Society, International Journal of Academic Research in Business and Social Sciences, vol. 5(2), pages 267-286, February.
    6. Hélie Moreau & Loïc de Jamblinne de Meux & Vanessa Zeller & Pierre D’Ans & Coline Ruwet & Wouter M.J. Achten, 2020. "Dockless E-Scooter: A Green Solution for Mobility? Comparative Case Study between Dockless E-Scooters, Displaced Transport, and Personal E-Scooters," Sustainability, MDPI, vol. 12(5), pages 1-17, February.
    7. Katarzyna Turoń & Andrzej Kubik & Feng Chen, 2021. "Electric Shared Mobility Services during the Pandemic: Modeling Aspects of Transportation," Energies, MDPI, vol. 14(9), pages 1-19, May.
    8. Mina Lee & Joseph Y. J. Chow & Gyugeun Yoon & Brian Yueshuai He, 2019. "Forecasting e-scooter substitution of direct and access trips by mode and distance," Papers 1908.08127, arXiv.org, revised Apr 2021.
    9. Martina Fazio & Nadia Giuffrida & Michela Le Pira & Giuseppe Inturri & Matteo Ignaccolo, 2021. "Planning Suitable Transport Networks for E-Scooters to Foster Micromobility Spreading," Sustainability, MDPI, vol. 13(20), pages 1-18, October.
    10. Alberica Domitilla Bozzi & Anne Aguilera, 2021. "Shared E-Scooters: A Review of Uses, Health and Environmental Impacts, and Policy Implications of a New Micro-Mobility Service," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
    11. Flah Aymen & Chokri Mahmoudi, 2019. "A Novel Energy Optimization Approach for Electrical Vehicles in a Smart City," Energies, MDPI, vol. 12(5), pages 1-22, March.
    12. Younes, Hannah & Zou, Zhenpeng & Wu, Jiahui & Baiocchi, Giovanni, 2020. "Comparing the Temporal Determinants of Dockless Scooter-share and Station-based Bike-share in Washington, D.C," Transportation Research Part A: Policy and Practice, Elsevier, vol. 134(C), pages 308-320.
    13. Laa, Barbara & Leth, Ulrich, 2020. "Survey of E-scooter users in Vienna: Who they are and how they ride," Journal of Transport Geography, Elsevier, vol. 89(C).
    14. Shaheen, Susan PhD & Cohen, Adam, 2019. "Shared Micromoblity Policy Toolkit: Docked and Dockless Bike and Scooter Sharing," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt00k897b5, Institute of Transportation Studies, UC Berkeley.
    15. Lin, Jiun-Sheng Chris & Hsieh, Pei-Ling, 2011. "Assessing the Self-service Technology Encounters: Development and Validation of SSTQUAL Scale," Journal of Retailing, Elsevier, vol. 87(2), pages 194-206.
    16. Ladhari, Riadh, 2010. "Developing e-service quality scales: A literature review," Journal of Retailing and Consumer Services, Elsevier, vol. 17(6), pages 464-477.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Medina-Molina, Cayetano & Pérez-Macías, Noemí & Fernández-Fernádez, José Luis, 2023. "The use of micromobility in different contexts. An explanation through the multilevel perspective and QCA," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    2. László Erdei & Péter Tamás & Béla Illés, 2023. "Improving the Efficiency of Rail Passenger Transportation Using an Innovative Operational Concept," Sustainability, MDPI, vol. 15(6), pages 1-23, March.
    3. Elżbieta Macioszek & Maria Cieśla & Anna Granà, 2023. "Future Development of an Energy-Efficient Electric Scooter Sharing System Based on a Stakeholder Analysis Method," Energies, MDPI, vol. 16(1), pages 1-24, January.
    4. Katarzyna Turoń & Andrzej Kubik & Piotr Folęga & Feng Chen, 2023. "Perception of Shared Electric Scooters: A Case Study from Poland," Sustainability, MDPI, vol. 15(16), pages 1-27, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fei-Hui Huang, 2021. "User Behavioral Intentions toward a Scooter-Sharing Service: An Empirical Study," Sustainability, MDPI, vol. 13(23), pages 1-21, November.
    2. Huo, Jinghai & Yang, Hongtai & Li, Chaojing & Zheng, Rong & Yang, Linchuan & Wen, Yi, 2021. "Influence of the built environment on E-scooter sharing ridership: A tale of five cities," Journal of Transport Geography, Elsevier, vol. 93(C).
    3. Abouelela, Mohamed & Chaniotakis, Emmanouil & Antoniou, Constantinos, 2023. "Understanding the landscape of shared-e-scooters in North America; Spatiotemporal analysis and policy insights," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).
    4. Roig-Costa, Oriol & Miralles-Guasch, Carme & Marquet, Oriol, 2024. "Shared bikes vs. private e-scooters. Understanding patterns of use and demand in a policy-constrained micromobility environment," Transport Policy, Elsevier, vol. 146(C), pages 116-125.
    5. Samira Dibaj & Aryan Hosseinzadeh & Miloš N. Mladenović & Robert Kluger, 2021. "Where Have Shared E-Scooters Taken Us So Far? A Review of Mobility Patterns, Usage Frequency, and Personas," Sustainability, MDPI, vol. 13(21), pages 1-27, October.
    6. Alberica Domitilla Bozzi & Anne Aguilera, 2021. "Shared E-Scooters: A Review of Uses, Health and Environmental Impacts, and Policy Implications of a New Micro-Mobility Service," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
    7. Mehzabin Tuli, Farzana & Mitra, Suman & Crews, Mariah B., 2021. "Factors influencing the usage of shared E-scooters in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 164-185.
    8. Shah, Nitesh R. & Ziedan, Abubakr & Brakewood, Candace & Cherry, Christopher R., 2023. "Shared e-scooter service providers with large fleet size have a competitive advantage: Findings from e-scooter demand and supply analysis of Nashville, Tennessee," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
    9. Abouelela, Mohamed & Durán-Rodas, David & Antoniou, Constantinos, 2024. "Do we all need shared E-scooters? An accessibility-centered spatial equity evaluation approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).
    10. Rémy Le Boennec & Frédéric Salladarré, 2023. "Investigating the use of privately-owned micromobility modes for commuting in four European countries," Post-Print hal-04296400, HAL.
    11. Krauss, Konstantin & Gnann, Till & Burgert, Tobias & Axhausen, Kay W., 2024. "Faster, greener, scooter? An assessment of shared e-scooter usage based on real-world driving data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).
    12. Draženko Glavić & Marina Milenković & Aleksandar Trifunović & Igor Jokanović & Jelica Komarica, 2023. "Influence of Dockless Shared E-Scooters on Urban Mobility: WTP and Modal Shift," Sustainability, MDPI, vol. 15(12), pages 1-17, June.
    13. Jin, Scarlett T. & Wang, Lei & Sui, Daniel, 2023. "How the built environment affects E-scooter sharing link flows: A machine learning approach," Journal of Transport Geography, Elsevier, vol. 112(C).
    14. Maximilian Heumann & Tobias Kraschewski & Tim Brauner & Lukas Tilch & Michael H. Breitner, 2021. "A Spatiotemporal Study and Location-Specific Trip Pattern Categorization of Shared E-Scooter Usage," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    15. Alexandra König & Laura Gebhardt & Kerstin Stark & Julia Schuppan, 2022. "A Multi-Perspective Assessment of the Introduction of E-Scooter Sharing in Germany," Sustainability, MDPI, vol. 14(5), pages 1-16, February.
    16. Ouassim Manout & Azise Oumar Diallo & Thibault Gloriot, 2023. "Implications of pricing and fleet size strategies on shared bikes and e-scooters: a case study from Lyon, France," Working Papers hal-04017908, HAL.
    17. Samadzad, Mahdi & Nosratzadeh, Hossein & Karami, Hossein & Karami, Ali, 2023. "What are the factors affecting the adoption and use of electric scooter sharing systems from the end user's perspective?," Transport Policy, Elsevier, vol. 136(C), pages 70-82.
    18. Sweet, Matthias N. & Scott, Darren M., 2021. "Shared mobility adoption from 2016 to 2018 in the Greater Toronto and Hamilton Area: Demographic or geographic diffusion?," Journal of Transport Geography, Elsevier, vol. 96(C).
    19. Yang, Hongtai & Zheng, Rong & Li, Xuan & Huo, Jinghai & Yang, Linchuan & Zhu, Tong, 2022. "Nonlinear and threshold effects of the built environment on e-scooter sharing ridership," Journal of Transport Geography, Elsevier, vol. 104(C).
    20. Shah, Nitesh R. & Guo, Jing & Han, Lee D. & Cherry, Christopher R., 2023. "Why do people take e-scooter trips? Insights on temporal and spatial usage patterns of detailed trip data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:7:p:4168-:d:784346. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.