IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v41y2014i1p211-228.html
   My bibliography  Save this article

Analyzing commuter train user behavior: a decision framework for access mode and station choice

Author

Listed:
  • Vincent Chakour
  • Naveen Eluru

Abstract

The purpose of the current research effort is to develop a framework for a better understanding of commuter train users’ access mode and station choice behavior. Typically, access mode and station choice for commuter train users is modeled as a hierarchical choice with access mode being considered as the first choice in the sequence. The current study proposes a latent segmentation based approach to relax the hierarchy. In particular, this innovative approach simultaneously considers two segments of station and access mode choice behavior: Segment 1—station first and access mode second and Segment 2—access mode first and station second. The allocation to the two segments is achieved through a latent segmentation approach that determines the probability of assigning the individual to either of these segments as a function of socio-demographic variables, level of service (LOS) parameters, trip characteristics, land-use and built environment factors, and station characteristics. The proposed latent segment model is estimated using data from an on-board survey conducted by the Agence Métropolitaine de Transport for commuter train users in Montreal region. The model is employed to investigate the role of socio-demographic variables, LOS parameters, trip characteristics, land-use and built environment factors, and station characteristics on commuter train user behavior. The results indicate that as the distance from the station by active forms of transportation increases, individuals are more likely to select a station first. Young persons, females, car owners, and individuals leaving before 7:30 a.m. have an increased propensity to drive to the commuter train station. The station model indicates that travel time has a significant negative impact on station choice, whereas, presence of parking and increased train frequency encourages use of the stations. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • Vincent Chakour & Naveen Eluru, 2014. "Analyzing commuter train user behavior: a decision framework for access mode and station choice," Transportation, Springer, vol. 41(1), pages 211-228, January.
  • Handle: RePEc:kap:transp:v:41:y:2014:i:1:p:211-228
    DOI: 10.1007/s11116-013-9509-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11116-013-9509-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-013-9509-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abdul Pinjari & Ram Pendyala & Chandra Bhat & Paul Waddell, 2007. "Modeling residential sorting effects to understand the impact of the built environment on commute mode choice," Transportation, Springer, vol. 34(5), pages 557-573, September.
    2. Givoni, Moshe & Rietveld, Piet, 2007. "The access journey to the railway station and its role in passengers' satisfaction with rail travel," Transport Policy, Elsevier, vol. 14(5), pages 357-365, September.
    3. Debrezion, Ghebreegziabiher & Pels, Eric & Rietveld, Piet, 2009. "Modelling the joint access mode and railway station choice," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(1), pages 270-283, January.
    4. Sider, Timothy & Alam, Ahsan & Zukari, Mohamad & Dugum, Hussam & Goldstein, Nathan & Eluru, Naveen & Hatzopoulou, Marianne, 2013. "Land-use and socio-economics as determinants of traffic emissions and individual exposure to air pollution," Journal of Transport Geography, Elsevier, vol. 33(C), pages 230-239.
    5. Krygsman, Stephan & Dijst, Martin & Arentze, Theo, 2004. "Multimodal public transport: an analysis of travel time elements and the interconnectivity ratio," Transport Policy, Elsevier, vol. 11(3), pages 265-275, July.
    6. Bhat, Chandra R., 1997. "Work travel mode choice and number of non-work commute stops," Transportation Research Part B: Methodological, Elsevier, vol. 31(1), pages 41-54, February.
    7. Abdul Pinjari & Ram Pendyala & Chandra Bhat & Paul Waddell, 2011. "Modeling the choice continuum: an integrated model of residential location, auto ownership, bicycle ownership, and commute tour mode choice decisions," Transportation, Springer, vol. 38(6), pages 933-958, November.
    8. Debrezion, Ghebreegziabiher & Pels, E. & Rietveld, Piet, 2007. "Choice of departure station by railway users," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 37, pages 78-92.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chitresh KUMAR & Anirban GANGULY, 2018. "Travelling Together But Differently: Comparing Variations In Public Transit User Mode Choice Attributes Across New Delhi And New York," Theoretical and Empirical Researches in Urban Management, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 13(3), pages 54-73, August.
    2. Hasnat, Md Mehedi & Faghih-Imani, Ahmadreza & Eluru, Naveen & Hasan, Samiul, 2019. "Destination choice modeling using location-based social media data," Journal of choice modelling, Elsevier, vol. 31(C), pages 22-34.
    3. Ahmadreza Faghih-Imani & Naveen Eluru, 2020. "A finite mixture modeling approach to examine New York City bicycle sharing system (CitiBike) users’ destination preferences," Transportation, Springer, vol. 47(2), pages 529-553, April.
    4. Kim, Sung Hoo & Mokhtarian, Patricia L., 2023. "Finite mixture (or latent class) modeling in transportation: Trends, usage, potential, and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 134-173.
    5. Faghih-Imani, Ahmadreza & Eluru, Naveen, 2015. "Analysing bicycle-sharing system user destination choice preferences: Chicago’s Divvy system," Journal of Transport Geography, Elsevier, vol. 44(C), pages 53-64.
    6. Hao Pang & Alireza Khani, 2018. "Modeling park-and-ride location choice of heterogeneous commuters," Transportation, Springer, vol. 45(1), pages 71-87, January.
    7. Givoni, Moshe & Rietveld, Piet, 2014. "Do cities deserve more railway stations? The choice of a departure railway station in a multiple-station region," Journal of Transport Geography, Elsevier, vol. 36(C), pages 89-97.
    8. Faghih-Imani, Ahmadreza & Eluru, Naveen, 2016. "A Latent Segmentation Multinomial Logit Approach to Examine Bicycle Sharing System Users' Destination Preferences," 57th Transportation Research Forum (51st CTRF) Joint Conference, Toronto, Ontario, May 1-4, 2016 319270, Transportation Research Forum.
    9. Giansoldati, Marco & Danielis, Romeo & Rotaris, Lucia, 2021. "Train-feeder modes in Italy. Is there a role for active mobility?," Research in Transportation Economics, Elsevier, vol. 86(C).
    10. Aaron Gutiérrez & Daniel Miravet & Òscar Saladié & Salvador Anton Clavé, 2019. "Transport Mode Choice by Tourists Transferring from a Peripheral High-Speed Rail Station to Their Destinations: Empirical Evidence from Costa Daurada," Sustainability, MDPI, vol. 11(11), pages 1-15, June.
    11. Rahman, Moshiur & Yasmin, Shamsunnahar & Eluru, Naveen, 2019. "Controlling for endogeneity between bus headway and bus ridership: A case study of the Orlando region," Transport Policy, Elsevier, vol. 81(C), pages 208-219.
    12. Raoul Rothfeld & Mengying Fu & Miloš Balać & Constantinos Antoniou, 2021. "Potential Urban Air Mobility Travel Time Savings: An Exploratory Analysis of Munich, Paris, and San Francisco," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    13. Hasnine, Md Sami & Graovac, Ana & Camargo, Felipe & Habib, Khandker Nurul, 2019. "A random utility maximization (RUM) based measure of accessibility to transit: Accurate capturing of the first-mile issue in urban transit," Journal of Transport Geography, Elsevier, vol. 74(C), pages 313-320.
    14. Mina Lee & Joseph Y. J. Chow & Gyugeun Yoon & Brian Yueshuai He, 2019. "Forecasting e-scooter substitution of direct and access trips by mode and distance," Papers 1908.08127, arXiv.org, revised Apr 2021.
    15. Keya, Nowreen & Anowar, Sabreena & Bhowmik, Tanmoy & Eluru, Naveen, 2021. "A joint framework for modeling freight mode and destination choice: Application to the US commodity flow survey data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 146(C).
    16. Zohreh Rashedi & Md Sami Hasnine & Khandker Nurul Habib, 2022. "Modelling second-best choices from the choice-based sample: revelation of potential mode-switching behaviour from transit passenger surveys," Public Transport, Springer, vol. 14(3), pages 609-633, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weliwitiya, Hesara & Rose, Geoffrey & Johnson, Marilyn, 2019. "Bicycle train intermodality: Effects of demography, station characteristics and the built environment," Journal of Transport Geography, Elsevier, vol. 74(C), pages 395-404.
    2. Saiyad, Gulnazbanu & Srivastava, Minal & Rathwa, Dipak, 2022. "Exploring determinants of feeder mode choice behavior using Artificial Neural Network: Evidences from Delhi metro," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    3. Watanabe, Hajime & Maruyama, Takuya, 2024. "A Bayesian sample selection model with a binary outcome for handling residential self-selection in individual car ownership," Journal of choice modelling, Elsevier, vol. 51(C).
    4. Zgheib, Najib & Abou-Zeid, Maya & Kaysi, Isam, 2020. "Modeling demand for ridesourcing as feeder for high capacity mass transit systems with an application to the planned Beirut BRT," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 70-91.
    5. Bhat, Chandra R. & Astroza, Sebastian & Sidharthan, Raghuprasad & Alam, Mohammad Jobair Bin & Khushefati, Waleed H., 2014. "A joint count-continuous model of travel behavior with selection based on a multinomial probit residential density choice model," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 31-51.
    6. Ta, Na & Zhao, Ying & Chai, Yanwei, 2016. "Built environment, peak hours and route choice efficiency: An investigation of commuting efficiency using GPS data," Journal of Transport Geography, Elsevier, vol. 57(C), pages 161-170.
    7. Hasnine, Md Sami & Graovac, Ana & Camargo, Felipe & Habib, Khandker Nurul, 2019. "A random utility maximization (RUM) based measure of accessibility to transit: Accurate capturing of the first-mile issue in urban transit," Journal of Transport Geography, Elsevier, vol. 74(C), pages 313-320.
    8. Humphreys, John & Ahern, Aoife, 2019. "Is travel based residential self-selection a significant influence in modal choice and household location decisions?," Transport Policy, Elsevier, vol. 75(C), pages 150-160.
    9. Meng, Meng & Rau, Andreas & Mahardhika, Hita, 2018. "Public transport travel time perception: Effects of socioeconomic characteristics, trip characteristics and facility usage," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PA), pages 24-37.
    10. Hao Pang & Alireza Khani, 2018. "Modeling park-and-ride location choice of heterogeneous commuters," Transportation, Springer, vol. 45(1), pages 71-87, January.
    11. Tran, Minh Tu & Zhang, Junyi & Chikaraishi, Makoto & Fujiwara, Akimasa, 2016. "A joint analysis of residential location, work location and commuting mode choices in Hanoi, Vietnam," Journal of Transport Geography, Elsevier, vol. 54(C), pages 181-193.
    12. Roberto F. Abenoza & Oded Cats & Yusak O. Susilo, 2019. "How does travel satisfaction sum up? An exploratory analysis in decomposing the door-to-door experience for multimodal trips," Transportation, Springer, vol. 46(5), pages 1615-1642, October.
    13. Givoni, Moshe & Rietveld, Piet, 2014. "Do cities deserve more railway stations? The choice of a departure railway station in a multiple-station region," Journal of Transport Geography, Elsevier, vol. 36(C), pages 89-97.
    14. Giansoldati, Marco & Danielis, Romeo & Rotaris, Lucia, 2021. "Train-feeder modes in Italy. Is there a role for active mobility?," Research in Transportation Economics, Elsevier, vol. 86(C).
    15. Jia Guo & Tao Feng & Harry J. P. Timmermans, 2020. "Modeling co-dependent choice of workplace, residence and commuting mode using an error component mixed logit model," Transportation, Springer, vol. 47(2), pages 911-933, April.
    16. Minho Seo & Dongyoub Lee, 2021. "Typological Differences in Railway Station Areas According to Locational Characteristics: A Nationwide Study of Korea," Sustainability, MDPI, vol. 13(8), pages 1-16, April.
    17. Muhammad Zudhy Irawan & Prawira Fajarindra Belgiawan & Tri Basuki Joewono & Nurvita I. M. Simanjuntak, 2020. "Do motorcycle-based ride-hailing apps threaten bus ridership? A hybrid choice modeling approach with latent variables," Public Transport, Springer, vol. 12(1), pages 207-231, March.
    18. Sadhukhan, Shubhajit & Banerjee, Uttam K. & Maitra, Bhargab, 2016. "Commuters’ willingness-to-pay for improvement of transfer facilities in and around metro stations – A case study in Kolkata," Transportation Research Part A: Policy and Practice, Elsevier, vol. 92(C), pages 43-58.
    19. Veronique Acker & Frank Witlox, 2011. "Commuting trips within tours: how is commuting related to land use?," Transportation, Springer, vol. 38(3), pages 465-486, May.
    20. Joeri F. P. Mil & Tessa S. Leferink & Jan Anne Annema & Niels Oort, 2021. "Insights into factors affecting the combined bicycle-transit mode," Public Transport, Springer, vol. 13(3), pages 649-673, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:41:y:2014:i:1:p:211-228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.