IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1812.07635.html
   My bibliography  Save this paper

Portfolio Rebalancing under Uncertainty Using Meta-heuristic Algorithm

Author

Listed:
  • Mostafa Zandieh
  • Seyed Omid Mohaddesi

Abstract

In this paper, we solve portfolio rebalancing problem when security returns are represented by uncertain variables considering transaction costs. The performance of the proposed model is studied using constant-proportion portfolio insurance (CPPI) as rebalancing strategy. Numerical results showed that uncertain parameters and different belief degrees will produce different efficient frontiers, and affect the performance of the proposed model. Moreover, CPPI strategy performs as an insurance mechanism and limits downside risk in bear markets while it allows potential benefit in bull markets. Finally, using a globally optimization solver and genetic algorithm (GA) for solving the model, we concluded that the problem size is an important factor in solving portfolio rebalancing problem with uncertain parameters and to gain better results, it is recommended to use a meta-heuristic algorithm rather than a global solver.

Suggested Citation

  • Mostafa Zandieh & Seyed Omid Mohaddesi, 2018. "Portfolio Rebalancing under Uncertainty Using Meta-heuristic Algorithm," Papers 1812.07635, arXiv.org.
  • Handle: RePEc:arx:papers:1812.07635
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1812.07635
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lin, Chang-Chun & Liu, Yi-Ting, 2008. "Genetic algorithms for portfolio selection problems with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 185(1), pages 393-404, February.
    2. Yu, Jing-Rung & Lee, Wen-Yi, 2011. "Portfolio rebalancing model using multiple criteria," European Journal of Operational Research, Elsevier, vol. 209(2), pages 166-175, March.
    3. Fang, Yong & Lai, K.K. & Wang, Shou-Yang, 2006. "Portfolio rebalancing model with transaction costs based on fuzzy decision theory," European Journal of Operational Research, Elsevier, vol. 175(2), pages 879-893, December.
    4. Gupta, Pankaj & Mittal, Garima & Mehlawat, Mukesh Kumar, 2013. "Expected value multiobjective portfolio rebalancing model with fuzzy parameters," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 190-203.
    5. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    6. Mr. Ewe-Ghee Lim, 2007. "Do Reserve Portfolios Respond to Exchange Rate Changes Using a Portfolio Rebalancing Strategy? An Econometric Study Using COFER Data," IMF Working Papers 2007/293, International Monetary Fund.
    7. Woodside-Oriakhi, M. & Lucas, C. & Beasley, J.E., 2013. "Portfolio rebalancing with an investment horizon and transaction costs," Omega, Elsevier, vol. 41(2), pages 406-420.
    8. Meihua Wang & Cheng Li & Honggang Xue & Fengmin Xu, 2014. "A New Portfolio Rebalancing Model with Transaction Costs," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-7, April.
    9. Shahvari, Omid & Logendran, Rasaratnam, 2016. "Hybrid flow shop batching and scheduling with a bi-criteria objective," International Journal of Production Economics, Elsevier, vol. 179(C), pages 239-258.
    10. Rama Cont & Peter Tankov, 2009. "Constant Proportion Portfolio Insurance In The Presence Of Jumps In Asset Prices," Mathematical Finance, Wiley Blackwell, vol. 19(3), pages 379-401, July.
    11. Wei Chen & Hui Ma & Yiping Yang & Mengrong Sun, 2014. "Application of Artificial Bee Colony Algorithm to Portfolio Adjustment Problem with Transaction Costs," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-12, June.
    12. Black, Fischer & Perold, AndreF., 1992. "Theory of constant proportion portfolio insurance," Journal of Economic Dynamics and Control, Elsevier, vol. 16(3-4), pages 403-426.
    13. Editors, 2014. "International Journal of Systems Science," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(12), pages 1-1, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gupta, Pankaj & Mittal, Garima & Mehlawat, Mukesh Kumar, 2013. "Expected value multiobjective portfolio rebalancing model with fuzzy parameters," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 190-203.
    2. Liu, Yong-Jun & Zhang, Wei-Guo, 2015. "A multi-period fuzzy portfolio optimization model with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 242(3), pages 933-941.
    3. Ben Ameur, H. & Prigent, J.L., 2014. "Portfolio insurance: Gap risk under conditional multiples," European Journal of Operational Research, Elsevier, vol. 236(1), pages 238-253.
    4. Jing-Rung Yu & Wan-Jiun Paul Chiou & Jian-Hong Yang, 2017. "Diversification benefits of risk portfolio models: a case of Taiwan’s stock market," Review of Quantitative Finance and Accounting, Springer, vol. 48(2), pages 467-502, February.
    5. Zhang, Wei-Guo & Liu, Yong-Jun & Xu, Wei-Jun, 2012. "A possibilistic mean-semivariance-entropy model for multi-period portfolio selection with transaction costs," European Journal of Operational Research, Elsevier, vol. 222(2), pages 341-349.
    6. Yu, Jing-Rung & Paul Chiou, Wan-Jiun & Hsin, Yi-Ting & Sheu, Her-Jiun, 2022. "Omega portfolio models with floating return threshold," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 743-758.
    7. Filippi, C. & Guastaroba, G. & Speranza, M.G., 2016. "A heuristic framework for the bi-objective enhanced index tracking problem," Omega, Elsevier, vol. 65(C), pages 122-137.
    8. Yu, Jing-Rung & Paul Chiou, Wan-Jiun & Lee, Wen-Yi & Lin, Shun-Ji, 2020. "Portfolio models with return forecasting and transaction costs," International Review of Economics & Finance, Elsevier, vol. 66(C), pages 118-130.
    9. Yu, Jing-Rung & Chiou, Wan-Jiun Paul & Mu, Da-Ren, 2015. "A linearized value-at-risk model with transaction costs and short selling," European Journal of Operational Research, Elsevier, vol. 247(3), pages 872-878.
    10. Gruszka, Jarosław & Szwabiński, Janusz, 2020. "Best portfolio management strategies for synthetic and real assets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    11. Woodside-Oriakhi, M. & Lucas, C. & Beasley, J.E., 2013. "Portfolio rebalancing with an investment horizon and transaction costs," Omega, Elsevier, vol. 41(2), pages 406-420.
    12. Mansini, Renata & Ogryczak, Wlodzimierz & Speranza, M. Grazia, 2014. "Twenty years of linear programming based portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 518-535.
    13. Yue, Wei & Wang, Yuping, 2017. "A new fuzzy multi-objective higher order moment portfolio selection model for diversified portfolios," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 124-140.
    14. Li, Bo & Zhang, Ranran, 2021. "A new mean-variance-entropy model for uncertain portfolio optimization with liquidity and diversification," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    15. Bo Zhang & Jin Peng & Shengguo Li, 2015. "Uncertain programming models for portfolio selection with uncertain returns," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(14), pages 2510-2519, October.
    16. Masafumi Nakano & Akihiko Takahashi & Soichiro Takahashi, 2017. "Robust Technical Trading with Fuzzy Knowledge-based Systems," CIRJE F-Series CIRJE-F-1053, CIRJE, Faculty of Economics, University of Tokyo.
    17. Sami Attaoui & Vincent Lacoste, 2013. "A scenario-based description of optimal American capital guaranteed strategies," Finance, Presses universitaires de Grenoble, vol. 34(2), pages 65-119.
    18. Hamidi, Benjamin & Maillet, Bertrand & Prigent, Jean-Luc, 2014. "A dynamic autoregressive expectile for time-invariant portfolio protection strategies," Journal of Economic Dynamics and Control, Elsevier, vol. 46(C), pages 1-29.
    19. Fang, Yong & Chen, Lihua & Fukushima, Masao, 2008. "A mixed R&D projects and securities portfolio selection model," European Journal of Operational Research, Elsevier, vol. 185(2), pages 700-715, March.
    20. Buckley, Winston & Long, Hongwei & Marshall, Mario, 2016. "Numerical approximations of optimal portfolios in mispriced asymmetric Lévy markets," European Journal of Operational Research, Elsevier, vol. 252(2), pages 676-686.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1812.07635. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.