IDEAS home Printed from https://ideas.repec.org/a/eee/reveco/v82y2022icp743-758.html
   My bibliography  Save this article

Omega portfolio models with floating return threshold

Author

Listed:
  • Yu, Jing-Rung
  • Paul Chiou, Wan-Jiun
  • Hsin, Yi-Ting
  • Sheu, Her-Jiun

Abstract

The Omega ratio is a risk-performance measure that specifies the upside profit and the downside loss by giving a return threshold (τ). Since there is no clear specification for the return threshold, this study advances the Omega models by incorporating various settings of the return threshold that reflect market dynamics: (1) the yields of Treasury securities, and (2) the negative CVaR value (or the gain) generated from equity markets. To ensure the practicality, our models consider the transaction costs and short selling. The empirical results that apply the two asset classes to rebalance portfolios over 17 and 20 years suggest that using the floating τ values, particularly the Treasury rates, realize higher out-of-the-sample performance and less downside loss. Our proposed approach is practical as the benchmark rates in fixed-income markets can be easily observed. The major findings hold for both non-robust and robust portfolio models. The tests of various preferences between seeking profit and controlling loss (δ) confirm robustness of the major conclusion.

Suggested Citation

  • Yu, Jing-Rung & Paul Chiou, Wan-Jiun & Hsin, Yi-Ting & Sheu, Her-Jiun, 2022. "Omega portfolio models with floating return threshold," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 743-758.
  • Handle: RePEc:eee:reveco:v:82:y:2022:i:c:p:743-758
    DOI: 10.1016/j.iref.2022.08.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1059056022002179
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.iref.2022.08.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zakamouline, Valeri & Koekebakker, Steen, 2009. "Portfolio performance evaluation with generalized Sharpe ratios: Beyond the mean and variance," Journal of Banking & Finance, Elsevier, vol. 33(7), pages 1242-1254, July.
    2. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    3. C. Atkinson & S. Mokkhavesa, 2004. "Multi-asset portfolio optimization with transaction cost," Applied Mathematical Finance, Taylor & Francis Journals, vol. 11(2), pages 95-123.
    4. Branger, Nicole & Larsen, Linda Sandris & Munk, Claus, 2013. "Robust portfolio choice with ambiguity and learning about return predictability," Journal of Banking & Finance, Elsevier, vol. 37(5), pages 1397-1411.
    5. Michael R. Metel & Traian A. Pirvu & Julian Wong, 2017. "Risk Management under Omega Measure," Risks, MDPI, vol. 5(2), pages 1-14, May.
    6. Caporin, Massimiliano & Costola, Michele & Jannin, Gregory & Maillet, Bertrand, 2018. "“On the (Ab)use of Omega?”," Journal of Empirical Finance, Elsevier, vol. 46(C), pages 11-33.
    7. Manfred GILLI & Enrico SCHUMANN & Giacomo DI TOLLO & Gerda CABEJ, 2008. "Constructing Long/Short Portfolios with the Omega ratio," Swiss Finance Institute Research Paper Series 08-34, Swiss Finance Institute.
    8. Yu, Jing-Rung & Lee, Wen-Yi, 2011. "Portfolio rebalancing model using multiple criteria," European Journal of Operational Research, Elsevier, vol. 209(2), pages 166-175, March.
    9. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    10. Fusai, Gianluca & Luciano, Elisa, 2001. "Dynamic value at risk under optimal and suboptimal portfolio policies," European Journal of Operational Research, Elsevier, vol. 135(2), pages 249-269, December.
    11. Laurent El Ghaoui & Maksim Oks & Francois Oustry, 2003. "Worst-Case Value-At-Risk and Robust Portfolio Optimization: A Conic Programming Approach," Operations Research, INFORMS, vol. 51(4), pages 543-556, August.
    12. Angelelli, Enrico & Mansini, Renata & Speranza, M. Grazia, 2008. "A comparison of MAD and CVaR models with real features," Journal of Banking & Finance, Elsevier, vol. 32(7), pages 1188-1197, July.
    13. Shushang Zhu & Masao Fukushima, 2009. "Worst-Case Conditional Value-at-Risk with Application to Robust Portfolio Management," Operations Research, INFORMS, vol. 57(5), pages 1155-1168, October.
    14. Gregory, Christine & Darby-Dowman, Ken & Mitra, Gautam, 2011. "Robust optimization and portfolio selection: The cost of robustness," European Journal of Operational Research, Elsevier, vol. 212(2), pages 417-428, July.
    15. Yusif Simaan, 1997. "Estimation Risk in Portfolio Selection: The Mean Variance Model Versus the Mean Absolute Deviation Model," Management Science, INFORMS, vol. 43(10), pages 1437-1446, October.
    16. Guastaroba, G. & Mansini, R. & Ogryczak, W. & Speranza, M.G., 2016. "Linear programming models based on Omega ratio for the Enhanced Index Tracking Problem," European Journal of Operational Research, Elsevier, vol. 251(3), pages 938-956.
    17. A. Ben-Tal & A. Nemirovski, 1998. "Robust Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 769-805, November.
    18. Amita Sharma & Sebastian Utz & Aparna Mehra, 2017. "Omega-CVaR portfolio optimization and its worst case analysis," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(2), pages 505-539, March.
    19. Kapsos, Michalis & Christofides, Nicos & Rustem, Berç, 2014. "Worst-case robust Omega ratio," European Journal of Operational Research, Elsevier, vol. 234(2), pages 499-507.
    20. Karthik Natarajan & Dessislava Pachamanova & Melvyn Sim, 2008. "Incorporating Asymmetric Distributional Information in Robust Value-at-Risk Optimization," Management Science, INFORMS, vol. 54(3), pages 573-585, March.
    21. Michael R. Metel & Traian A. Pirvu & Julian Wong, 2015. "Risk management under Omega measure," Papers 1510.05790, arXiv.org, revised Apr 2017.
    22. Huang, Dashan & Zhu, Shushang & Fabozzi, Frank J. & Fukushima, Masao, 2010. "Portfolio selection under distributional uncertainty: A relative robust CVaR approach," European Journal of Operational Research, Elsevier, vol. 203(1), pages 185-194, May.
    23. M. Gilli & E. Kellezi & H. Hysi, 2006. "A Data-Driven Optimization Heuristic for Downside Risk Minimization," Computing in Economics and Finance 2006 355, Society for Computational Economics.
    24. Takeda, Akiko & Kanamori, Takafumi, 2009. "A robust approach based on conditional value-at-risk measure to statistical learning problems," European Journal of Operational Research, Elsevier, vol. 198(1), pages 287-296, October.
    25. Woodside-Oriakhi, M. & Lucas, C. & Beasley, J.E., 2013. "Portfolio rebalancing with an investment horizon and transaction costs," Omega, Elsevier, vol. 41(2), pages 406-420.
    26. Hiroshi Konno & Hiroaki Yamazaki, 1991. "Mean-Absolute Deviation Portfolio Optimization Model and Its Applications to Tokyo Stock Market," Management Science, INFORMS, vol. 37(5), pages 519-531, May.
    27. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    28. Michael J. Best & Robert R. Grauer, 1991. "Sensitivity Analysis for Mean-Variance Portfolio Problems," Management Science, INFORMS, vol. 37(8), pages 980-989, August.
    29. Bernd Scherer, 2007. "Can robust portfolio optimisation help to build better portfolios?," Journal of Asset Management, Palgrave Macmillan, vol. 7(6), pages 374-387, March.
    30. Quaranta, Anna Grazia & Zaffaroni, Alberto, 2008. "Robust optimization of conditional value at risk and portfolio selection," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2046-2056, October.
    31. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2022. "Robust portfolio selection problems: a comprehensive review," Operational Research, Springer, vol. 22(4), pages 3203-3264, September.
    2. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2021. "Robust Portfolio Selection Problems: A Comprehensive Review," Papers 2103.13806, arXiv.org, revised Jan 2022.
    3. Panos Xidonas & Ralph Steuer & Christis Hassapis, 2020. "Robust portfolio optimization: a categorized bibliographic review," Annals of Operations Research, Springer, vol. 292(1), pages 533-552, September.
    4. Amita Sharma & Sebastian Utz & Aparna Mehra, 2017. "Omega-CVaR portfolio optimization and its worst case analysis," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(2), pages 505-539, March.
    5. Jang Ho Kim & Woo Chang Kim & Frank J. Fabozzi, 2014. "Recent Developments in Robust Portfolios with a Worst-Case Approach," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 103-121, April.
    6. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    7. Jing-Rung Yu & Wan-Jiun Paul Chiou & Jian-Hong Yang, 2017. "Diversification benefits of risk portfolio models: a case of Taiwan’s stock market," Review of Quantitative Finance and Accounting, Springer, vol. 48(2), pages 467-502, February.
    8. Yu, Jing-Rung & Paul Chiou, Wan-Jiun & Lee, Wen-Yi & Lin, Shun-Ji, 2020. "Portfolio models with return forecasting and transaction costs," International Review of Economics & Finance, Elsevier, vol. 66(C), pages 118-130.
    9. Lwin, Khin T. & Qu, Rong & MacCarthy, Bart L., 2017. "Mean-VaR portfolio optimization: A nonparametric approach," European Journal of Operational Research, Elsevier, vol. 260(2), pages 751-766.
    10. Yu, Jing-Rung & Chiou, Wan-Jiun Paul & Mu, Da-Ren, 2015. "A linearized value-at-risk model with transaction costs and short selling," European Journal of Operational Research, Elsevier, vol. 247(3), pages 872-878.
    11. Luan, Fei & Zhang, Weiguo & Liu, Yongjun, 2022. "Robust international portfolio optimization with worst‐case mean‐CVaR," European Journal of Operational Research, Elsevier, vol. 303(2), pages 877-890.
    12. Goh, Joel Weiqiang & Lim, Kian Guan & Sim, Melvyn & Zhang, Weina, 2012. "Portfolio value-at-risk optimization for asymmetrically distributed asset returns," European Journal of Operational Research, Elsevier, vol. 221(2), pages 397-406.
    13. Sandra Cruz Caçador & Pedro Manuel Cortesão Godinho & Joana Maria Pina Cabral Matos Dias, 2022. "A minimax regret portfolio model based on the investor’s utility loss," Operational Research, Springer, vol. 22(1), pages 449-484, March.
    14. Sehgal, Ruchika & Sharma, Amita & Mansini, Renata, 2023. "Worst-case analysis of Omega-VaR ratio optimization model," Omega, Elsevier, vol. 114(C).
    15. Selim Mankai & Khaled Guesmi, 2014. "Robust Portfolio Protection: A Scenarios-Based Approach," Working Papers hal-04141326, HAL.
    16. Yu, Jing-Rung & Chiou, W. Paul & Hung, Cing-Hung & Dong, Wen-Kuei & Chang, Yi-Hsuan, 2022. "Dynamic rebalancing portfolio models with analyses of investor sentiment," International Review of Economics & Finance, Elsevier, vol. 77(C), pages 1-13.
    17. Mansini, Renata & Ogryczak, Wlodzimierz & Speranza, M. Grazia, 2014. "Twenty years of linear programming based portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 518-535.
    18. Sally G. Arcidiacono & Damiano Rossello, 2022. "A hybrid approach to the discrepancy in financial performance’s robustness," Operational Research, Springer, vol. 22(5), pages 5441-5476, November.
    19. Carole Bernard & Massimiliano Caporin & Bertrand Maillet & Xiang Zhang, 2023. "Omega Compatibility: A Meta-analysis," Computational Economics, Springer;Society for Computational Economics, vol. 62(2), pages 493-526, August.
    20. Wei Liu & Li Yang & Bo Yu, 2021. "KDE distributionally robust portfolio optimization with higher moment coherent risk," Annals of Operations Research, Springer, vol. 307(1), pages 363-397, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reveco:v:82:y:2022:i:c:p:743-758. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620165 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.