IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v539y2020ics0378437119316656.html
   My bibliography  Save this article

Best portfolio management strategies for synthetic and real assets

Author

Listed:
  • Gruszka, Jarosław
  • Szwabiński, Janusz

Abstract

Managing investment portfolios is an old and well know problem in multiple fields including financial mathematics and financial engineering as well as econometrics and econophysics. Multiple different concepts and theories were used so far to describe methods of handling with financial assets, including differential equations, stochastic calculus and advanced statistics. In this paper, using a set of tools from the probability theory, various strategies of building financial portfolios are analysed in different market conditions. A special attention is given to several realisations of a so called balanced portfolio, which is rooted in the natural “buy-low-sell-high” principle. Results show that there is no universal strategy, because they perform differently in different circumstances (e.g. for varying transaction costs). Moreover, the planned time of investment may also have a significant impact on the profitability of certain strategies. All methods have been tested with both simulated trajectories and real data from the Polish stock market.

Suggested Citation

  • Gruszka, Jarosław & Szwabiński, Janusz, 2020. "Best portfolio management strategies for synthetic and real assets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
  • Handle: RePEc:eee:phsmap:v:539:y:2020:i:c:s0378437119316656
    DOI: 10.1016/j.physa.2019.122938
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119316656
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.122938?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. William F. Sharpe, 1963. "A Simplified Model for Portfolio Analysis," Management Science, INFORMS, vol. 9(2), pages 277-293, January.
    2. Jakša Cvitanić & Ioannis Karatzas, 1996. "Hedging And Portfolio Optimization Under Transaction Costs: A Martingale Approach12," Mathematical Finance, Wiley Blackwell, vol. 6(2), pages 133-165, April.
    3. Andrew J. Morton & Stanley R. Pliska, 1995. "Optimal Portfolio Management With Fixed Transaction Costs," Mathematical Finance, Wiley Blackwell, vol. 5(4), pages 337-356, October.
    4. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    5. Cesari, Riccardo & Cremonini, David, 2003. "Benchmarking, portfolio insurance and technical analysis: a Monte Carlo comparison of dynamic strategies of asset allocation," Journal of Economic Dynamics and Control, Elsevier, vol. 27(6), pages 987-1011, April.
    6. Paolo Laureti & Matus Medo & Yi-Cheng Zhang, 2010. "Analysis of Kelly-optimal portfolios," Quantitative Finance, Taylor & Francis Journals, vol. 10(7), pages 689-697.
    7. Fang, Yong & Lai, K.K. & Wang, Shou-Yang, 2006. "Portfolio rebalancing model with transaction costs based on fuzzy decision theory," European Journal of Operational Research, Elsevier, vol. 175(2), pages 879-893, December.
    8. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    9. Woodside-Oriakhi, M. & Lucas, C. & Beasley, J.E., 2013. "Portfolio rebalancing with an investment horizon and transaction costs," Omega, Elsevier, vol. 41(2), pages 406-420.
    10. Paul A. Samuelson, 2011. "Lifetime Portfolio Selection by Dynamic Stochastic Programming," World Scientific Book Chapters, in: Leonard C MacLean & Edward O Thorp & William T Ziemba (ed.), THE KELLY CAPITAL GROWTH INVESTMENT CRITERION THEORY and PRACTICE, chapter 31, pages 465-472, World Scientific Publishing Co. Pte. Ltd..
    11. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    12. Pogue, G A, 1970. "An Extension of the Markowitz Portfolio Selection Model to Include Variable Transactions' Costs, Short Sales, Leverage Policies and Taxes," Journal of Finance, American Finance Association, vol. 25(5), pages 1005-1027, December.
    13. Merton, Robert C., 1972. "An Analytic Derivation of the Efficient Portfolio Frontier," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 7(4), pages 1851-1872, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gruszka, Jarosław & Szwabiński, Janusz, 2021. "Advanced strategies of portfolio management in the Heston market model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
    2. Yuanyuan Zhang & Xiang Li & Sini Guo, 2018. "Portfolio selection problems with Markowitz’s mean–variance framework: a review of literature," Fuzzy Optimization and Decision Making, Springer, vol. 17(2), pages 125-158, June.
    3. Penaranda, Francisco, 2007. "Portfolio choice beyond the traditional approach," LSE Research Online Documents on Economics 24481, London School of Economics and Political Science, LSE Library.
    4. Jan Kallsen & Johannes Muhle-Karbe, 2013. "The General Structure of Optimal Investment and Consumption with Small Transaction Costs," Papers 1303.3148, arXiv.org, revised May 2015.
    5. John Y. Campbell & Yeung Lewis Chanb & M. Viceira, 2013. "A multivariate model of strategic asset allocation," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part II, chapter 39, pages 809-848, World Scientific Publishing Co. Pte. Ltd..
    6. Chen, Jia & Li, Degui & Linton, Oliver & Lu, Zudi, 2016. "Semiparametric dynamic portfolio choice with multiple conditioning variables," Journal of Econometrics, Elsevier, vol. 194(2), pages 309-318.
    7. Schwartz, Eduardo S & Tebaldi, Claudio, 2004. "Illiquid Assets and Optimal Portfolio Choice," University of California at Los Angeles, Anderson Graduate School of Management qt7q65t12x, Anderson Graduate School of Management, UCLA.
    8. Lin, Wen-chang & Lu, Jin-ray, 2012. "Risky asset allocation and consumption rule in the presence of background risk and insurance markets," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 150-158.
    9. Li, Zhongfei & Yao, Jing & Li, Duan, 2010. "Behavior patterns of investment strategies under Roy's safety-first principle," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(2), pages 167-179, May.
    10. David S. Jones & V. Vance Roley, 1981. "Bliss Points in Mean-Variance Portfolio Models," NBER Technical Working Papers 0019, National Bureau of Economic Research, Inc.
    11. Fang, Yong & Chen, Lihua & Fukushima, Masao, 2008. "A mixed R&D projects and securities portfolio selection model," European Journal of Operational Research, Elsevier, vol. 185(2), pages 700-715, March.
    12. Christine Kaufmann & Martin Weber & Emily Haisley, 2013. "The Role of Experience Sampling and Graphical Displays on One's Investment Risk Appetite," Management Science, INFORMS, vol. 59(2), pages 323-340, July.
    13. Bilel Jarraya & Abdelfettah Bouri, 2013. "A Theoretical Assessment on Optimal Asset Allocations in Insurance Industry," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 2(4), pages 30-44, October.
    14. Jakub W. Jurek & Luis M. Viceira, 2011. "Optimal Value and Growth Tilts in Long-Horizon Portfolios," Review of Finance, European Finance Association, vol. 15(1), pages 29-74.
    15. Jiang, Chonghui & Ma, Yongkai & An, Yunbi, 2013. "International portfolio selection with exchange rate risk: A behavioural portfolio theory perspective," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 648-659.
    16. Ma, Guiyuan & Siu, Chi Chung & Zhu, Song-Ping, 2019. "Dynamic portfolio choice with return predictability and transaction costs," European Journal of Operational Research, Elsevier, vol. 278(3), pages 976-988.
    17. Joseph Friedman & Herbert E Phillips, 2010. "The Portfolio Implications of Adding Social Security Private Account Options to Ongoing Investments," DETU Working Papers 1004, Department of Economics, Temple University.
    18. Guiso, Luigi & Sodini, Paolo, 2013. "Household Finance: An Emerging Field," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1397-1532, Elsevier.
    19. Merton, Robert C., 1993. "On the microeconomic theory of investment under uncertainty," Handbook of Mathematical Economics, in: K. J. Arrow & M.D. Intriligator (ed.), Handbook of Mathematical Economics, edition 4, volume 2, chapter 13, pages 601-669, Elsevier.
    20. Buckley, Winston S. & Brown, Garfield O. & Marshall, Mario, 2012. "A mispricing model of stocks under asymmetric information," European Journal of Operational Research, Elsevier, vol. 221(3), pages 584-592.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:539:y:2020:i:c:s0378437119316656. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.