IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v146y2021ics0960077921001958.html
   My bibliography  Save this article

A new mean-variance-entropy model for uncertain portfolio optimization with liquidity and diversification

Author

Listed:
  • Li, Bo
  • Zhang, Ranran

Abstract

This paper deals with a portfolio optimization problem with uncertain returns. Here, the returns of risky assets are regarded as uncertain variables which are estimated by experienced experts. First, a mean-variance-entropy model for uncertain portfolio optimization problem is presented by taking into account four criteria viz., return, risk, liquidity and diversification degree of portfolio. In our model, the investment return is quantified by uncertain expected value, the investment risk is characterized by uncertain variance and entropy is used to measure the diversification degree of portfolio. Moreover, different from the previous bi-objective optimization model, our model achieves both the maximum return and the minimum risk in a single objective form by introducing a risk aversion factor and the dimensional influence caused by different units is eliminated by normalization method. Then, two auxiliary portfolio selection models are transformed into different equivalent deterministic models. Finally, a numerical simulation is given to verify the effectiveness and practicality of our model.

Suggested Citation

  • Li, Bo & Zhang, Ranran, 2021. "A new mean-variance-entropy model for uncertain portfolio optimization with liquidity and diversification," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
  • Handle: RePEc:eee:chsofr:v:146:y:2021:i:c:s0960077921001958
    DOI: 10.1016/j.chaos.2021.110842
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921001958
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.110842?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fang, Yong & Lai, K.K. & Wang, Shou-Yang, 2006. "Portfolio rebalancing model with transaction costs based on fuzzy decision theory," European Journal of Operational Research, Elsevier, vol. 175(2), pages 879-893, December.
    2. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    3. Li, Xiang & Qin, Zhongfeng & Kar, Samarjit, 2010. "Mean-variance-skewness model for portfolio selection with fuzzy returns," European Journal of Operational Research, Elsevier, vol. 202(1), pages 239-247, April.
    4. Arenas Parra, M. & Bilbao Terol, A. & Rodriguez Uria, M. V., 2001. "A fuzzy goal programming approach to portfolio selection," European Journal of Operational Research, Elsevier, vol. 133(2), pages 287-297, January.
    5. Andre F. Perold, 1984. "Large-Scale Portfolio Optimization," Management Science, INFORMS, vol. 30(10), pages 1143-1160, October.
    6. Qun Zhang & Xiaoxia Huang & Chao Zhang, 2015. "A mean-risk index model for uncertain capital budgeting," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(5), pages 761-770, May.
    7. Hogan, William W. & Warren, James M., 1974. "Toward the Development of an Equilibrium Capital-Market Model Based on Semivariance," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 9(1), pages 1-11, January.
    8. Yusif Simaan, 1997. "Estimation Risk in Portfolio Selection: The Mean Variance Model Versus the Mean Absolute Deviation Model," Management Science, INFORMS, vol. 43(10), pages 1437-1446, October.
    9. Huang, Xiaoxia & Ying, Haiyao, 2013. "Risk index based models for portfolio adjusting problem with returns subject to experts' evaluations," Economic Modelling, Elsevier, vol. 30(C), pages 61-66.
    10. Dai, Zhifeng & Wang, Fei, 2019. "Sparse and robust mean–variance portfolio optimization problems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1371-1378.
    11. Xiaoxia Huang & Hao Di, 2020. "Uncertain portfolio selection with mental accounts," International Journal of Systems Science, Taylor & Francis Journals, vol. 51(12), pages 2079-2090, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Xin & Zhu, Yuanguo, 2021. "Optimal control for uncertain random singular systems with multiple time-delays," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    2. Li, Bo & Li, Xiangfa & Teo, Kok Lay & Zheng, Peiyao, 2022. "A new uncertain random portfolio optimization model for complex systems with downside risks and diversification," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    3. Zhang, Cheng & Gong, Xiaomin & Zhang, Jingshu & Chen, Zhiwei, 2023. "Dynamic portfolio allocation for financial markets: A perspective of competitive-cum-compensatory strategy," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 84(C).
    4. Jie, Ke-Wei & Liu, San-Yang & Sun, Xiao-Jun & Xu, Yun-Cheng, 2023. "A dynamic ripple-spreading algorithm for solving mean–variance of shortest path model in uncertain random networks," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gupta, Pankaj & Mittal, Garima & Mehlawat, Mukesh Kumar, 2013. "Expected value multiobjective portfolio rebalancing model with fuzzy parameters," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 190-203.
    2. Liu, Yong-Jun & Zhang, Wei-Guo & Zhang, Pu, 2013. "A multi-period portfolio selection optimization model by using interval analysis," Economic Modelling, Elsevier, vol. 33(C), pages 113-119.
    3. Huang, Xiaoxia, 2007. "Two new models for portfolio selection with stochastic returns taking fuzzy information," European Journal of Operational Research, Elsevier, vol. 180(1), pages 396-405, July.
    4. Tsaur, Ruey-Chyn, 2013. "Fuzzy portfolio model with different investor risk attitudes," European Journal of Operational Research, Elsevier, vol. 227(2), pages 385-390.
    5. Li, Bo & Huang, Yayi, 2023. "Uncertain random portfolio selection with different mental accounts based on mixed data," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    6. Barak, Sasan & Abessi, Masoud & Modarres, Mohammad, 2013. "Fuzzy turnover rate chance constraints portfolio model," European Journal of Operational Research, Elsevier, vol. 228(1), pages 141-147.
    7. Leung, Pui-Lam & Ng, Hon-Yip & Wong, Wing-Keung, 2012. "An improved estimation to make Markowitz’s portfolio optimization theory users friendly and estimation accurate with application on the US stock market investment," European Journal of Operational Research, Elsevier, vol. 222(1), pages 85-95.
    8. Guo, Sini & Yu, Lean & Li, Xiang & Kar, Samarjit, 2016. "Fuzzy multi-period portfolio selection with different investment horizons," European Journal of Operational Research, Elsevier, vol. 254(3), pages 1026-1035.
    9. Yu, Jing-Rung & Lee, Wen-Yi, 2011. "Portfolio rebalancing model using multiple criteria," European Journal of Operational Research, Elsevier, vol. 209(2), pages 166-175, March.
    10. Pankaj Gupta & Mukesh Mehlawat & Garima Mittal, 2012. "Asset portfolio optimization using support vector machines and real-coded genetic algorithm," Journal of Global Optimization, Springer, vol. 53(2), pages 297-315, June.
    11. Ruey-Chyn Tsaur, 2015. "Fuzzy portfolio model with fuzzy-input return rates and fuzzy-output proportions," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(3), pages 438-450, February.
    12. Bai, Zhidong & Liu, Huixia & Wong, Wing-Keung, 2016. "Making Markowitz's Portfolio Optimization Theory Practically Useful," MPRA Paper 74360, University Library of Munich, Germany.
    13. Li, Jun & Xu, Jiuping, 2009. "A novel portfolio selection model in a hybrid uncertain environment," Omega, Elsevier, vol. 37(2), pages 439-449, April.
    14. H S Ryoo, 2007. "A compact mean-variance-skewness model for large-scale portfolio optimization and its application to the NYSE market," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(4), pages 505-515, April.
    15. Bai, Zhidong & Li, Hua & Wong, Wing-Keung, 2013. "The best estimation for high-dimensional Markowitz mean-variance optimization," MPRA Paper 43862, University Library of Munich, Germany.
    16. Yang, Tingting & Huang, Xiaoxia, 2022. "Two new mean–variance enhanced index tracking models based on uncertainty theory," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    17. Trichilli, Yousra & Abbes, Mouna Boujelbène & Masmoudi, Afif, 2020. "Islamic and conventional portfolios optimization under investor sentiment states: Bayesian vs Markowitz portfolio analysis," Research in International Business and Finance, Elsevier, vol. 51(C).
    18. Liu, Yong-Jun & Zhang, Wei-Guo, 2015. "A multi-period fuzzy portfolio optimization model with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 242(3), pages 933-941.
    19. Bo Zhang & Jin Peng & Shengguo Li, 2015. "Uncertain programming models for portfolio selection with uncertain returns," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(14), pages 2510-2519, October.
    20. Masafumi Nakano & Akihiko Takahashi & Soichiro Takahashi, 2017. "Robust Technical Trading with Fuzzy Knowledge-based Systems," CIRJE F-Series CIRJE-F-1053, CIRJE, Faculty of Economics, University of Tokyo.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:146:y:2021:i:c:s0960077921001958. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.