IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1808.07737.html
   My bibliography  Save this paper

Asymmetric linkages: maxmin vs. reflected maxmin copulas

Author

Listed:
  • Damjana Kokol Bukovv{s}ek
  • Tomav{z} Kov{s}ir
  • Blav{z} Mojv{s}kerc
  • Matjav{z} Omladiv{c}

Abstract

In this paper we introduce some new copulas emerging from shock models. It was shown earlier that reflected maxmin copulas (RMM for short) are not just some specific singular copulas; they contain many important absolutely continuous copulas including the negative quadrant dependent part of the Eyraud-Farlie-Gumbel-Morgenstern class. The main goal of this paper is to develop the RMM copulas with dependent endogenous shocks and give evidence that RMM copulas may exhibit some characteristics better than the original maxmin copulas (MM for short): (1) An important evidence for that is the iteration procedure of the RMM transformation which we prove to be always convergent and we give many properties of it that are useful in applications. (2) Using this result we find also the limit of the iteration procedure of the MM transformation thus answering a question proposed earlier by Durante, Omladi\v{c}, Ora\v{z}em, and Ru\v{z}i\'{c}. (3) We give the multivariate dependent RMM copula that compares to the MM version given by Durante, Omladi\v{c}, Ora\v{z}em, and Ru\v{z}i\'{c}. In all our copulas the idiosyncratic and systemic shocks are combined via asymmetric linking functions as opposed to Marshall copulas where symmetric linking functions are used.

Suggested Citation

  • Damjana Kokol Bukovv{s}ek & Tomav{z} Kov{s}ir & Blav{z} Mojv{s}kerc & Matjav{z} Omladiv{c}, 2018. "Asymmetric linkages: maxmin vs. reflected maxmin copulas," Papers 1808.07737, arXiv.org, revised Jul 2019.
  • Handle: RePEc:arx:papers:1808.07737
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1808.07737
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huillet, Thierry E., 2018. "Stochastic species abundance models involving special copulas," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 77-91.
    2. Lindskog, Filip & McNeil, Alexander J., 2003. "Common Poisson Shock Models: Applications to Insurance and Credit Risk Modelling," ASTIN Bulletin, Cambridge University Press, vol. 33(2), pages 209-238, November.
    3. Umberto Cherubini & Sabrina Mulinacci, 2015. "Systemic Risk with Exchangeable Contagion: Application to the European Banking System," Papers 1502.01918, arXiv.org.
    4. Rodríguez-Lallena, José Antonio & Úbeda-Flores, Manuel, 2004. "A new class of bivariate copulas," Statistics & Probability Letters, Elsevier, vol. 66(3), pages 315-325, February.
    5. Sabrina Mulinacci, 2018. "Archimedean-based Marshall-Olkin Distributions and Related Dependence Structures," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 205-236, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Damjana Kokol Bukovv{s}ek & Tomav{z} Kov{s}ir & Blav{z} Mojv{s}kerc & Matjav{z} Omladiv{c}, 2018. "Non-exchangeability of copulas arising from shock models," Papers 1808.09698, arXiv.org, revised Jul 2019.
    2. Kokol Bukovšek, Damjana & Košir, Tomaž & Mojškerc, Blaž & Omladič, Matjaž, 2022. "Extreme generators of shock induced copulas," Applied Mathematics and Computation, Elsevier, vol. 429(C).
    3. Sabrina Mulinacci, 2022. "A Marshall-Olkin Type Multivariate Model with Underlying Dependent Shocks," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2455-2484, December.
    4. Okhrin, Ostap & Ristig, Alexander & Sheen, Jeffrey R. & Trück, Stefan, 2015. "Conditional systemic risk with penalized copula," SFB 649 Discussion Papers 2015-038, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    5. Avanzi, Benjamin & Taylor, Greg & Wong, Bernard & Yang, Xinda, 2021. "On the modelling of multivariate counts with Cox processes and dependent shot noise intensities," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 9-24.
    6. Tomasz R. Bielecki & Areski Cousin & Stéphane Crépey & Alexander Herbertsson, 2014. "Dynamic Hedging of Portfolio Credit Risk in a Markov Copula Model," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 90-102, April.
    7. Thomas Deschatre & Xavier Warin, 2023. "A Common Shock Model for multidimensional electricity intraday price modelling with application to battery valuation," Papers 2307.16619, arXiv.org.
    8. Mhamed Mesfioui & Mohamed Kayid, 2021. "Residual Probability Function for Dependent Lifetimes," Mathematics, MDPI, vol. 9(15), pages 1-13, July.
    9. Antoine Bouveret, 2018. "Cyber Risk for the Financial Sector: A Framework for Quantitative Assessment," IMF Working Papers 2018/143, International Monetary Fund.
    10. Christian Hering & Jan-Frederik Mai, 2012. "Moment-based estimation of extendible Marshall-Olkin copulas," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(5), pages 601-620, July.
    11. Robert Jarrow & Jeff Oxman & Yildiray Yildirim, 2010. "The cost of operational risk loss insurance," Review of Derivatives Research, Springer, vol. 13(3), pages 273-295, October.
    12. Mukhtar M. Salah & M. El-Morshedy & M. S. Eliwa & Haitham M. Yousof, 2020. "Expanded Fréchet Model: Mathematical Properties, Copula, Different Estimation Methods, Applications and Validation Testing," Mathematics, MDPI, vol. 8(11), pages 1-29, November.
    13. H. Klammler & P. S. C. Rao & K. Hatfield, 2018. "Modeling dynamic resilience in coupled technological-social systems subjected to stochastic disturbance regimes," Environment Systems and Decisions, Springer, vol. 38(1), pages 140-159, March.
    14. Mark Bentley & Alec Stephenson & Peter Toscas & Zili Zhu, 2020. "A Multivariate Model to Quantify and Mitigate Cybersecurity Risk," Risks, MDPI, vol. 8(2), pages 1-21, June.
    15. Robert Jarrow, 2017. "Operational Risk," World Scientific Book Chapters, in: THE ECONOMIC FOUNDATIONS OF RISK MANAGEMENT Theory, Practice, and Applications, chapter 8, pages 69-70, World Scientific Publishing Co. Pte. Ltd..
    16. Mahmoud M. Mansour & Mohamed Ibrahim & Khaoula Aidi & Nadeem Shafique Butt & Mir Masoom Ali & Haitham M. Yousof & Mohamed S. Hamed, 2020. "A New Log-Logistic Lifetime Model with Mathematical Properties, Copula, Modified Goodness-of-Fit Test for Validation and Real Data Modeling," Mathematics, MDPI, vol. 8(9), pages 1-20, September.
    17. Benjamin Avanzi & Gregory Clive Taylor & Bernard Wong & Xinda Yang, 2020. "On the modelling of multivariate counts with Cox processes and dependent shot noise intensities," Papers 2004.11169, arXiv.org, revised Dec 2020.
    18. Liu, Wenyue & Cadenillas, Abel, 2023. "Optimal insurance contracts for a shot-noise Cox claim process and persistent insured's actions," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 69-93.
    19. Shah, Anand, 2016. "Pricing and Risk Mitigation Analysis of a Cyber Liability Insurance using Gaussian, t and Gumbel Copulas – A case for Cyber Risk Index," MPRA Paper 111968, University Library of Munich, Germany.
    20. Mittnik, Stefan & Yener, Tina, 2008. "Value-at-Risk and expected shortfall for rare events," CFS Working Paper Series 2008/14, Center for Financial Studies (CFS).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1808.07737. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.