IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1807.07215.html
   My bibliography  Save this paper

Machine Learning Classifiers Do Not Improve the Prediction of Academic Risk: Evidence from Australia

Author

Listed:
  • Sarah Cornell-Farrow
  • Robert Garrard

Abstract

Machine learning methods tend to outperform traditional statistical models at prediction. In the prediction of academic achievement, ML models have not shown substantial improvement over logistic regression. So far, these results have almost entirely focused on college achievement, due to the availability of administrative datasets, and have contained relatively small sample sizes by ML standards. In this article we apply popular machine learning models to a large dataset ($n=1.2$ million) containing primary and middle school performance on a standardized test given annually to Australian students. We show that machine learning models do not outperform logistic regression for detecting students who will perform in the `below standard' band of achievement upon sitting their next test, even in a large-$n$ setting.

Suggested Citation

  • Sarah Cornell-Farrow & Robert Garrard, 2018. "Machine Learning Classifiers Do Not Improve the Prediction of Academic Risk: Evidence from Australia," Papers 1807.07215, arXiv.org, revised Jan 2020.
  • Handle: RePEc:arx:papers:1807.07215
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1807.07215
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roland G. Fryer & Steven D. Levitt, 2010. "An Empirical Analysis of the Gender Gap in Mathematics," American Economic Journal: Applied Economics, American Economic Association, vol. 2(2), pages 210-240, April.
    2. Paul W. Miller & Derby Voon, 2014. "School outcomes in New South Wales and Queensland: a regression discontinuity approach," Education Economics, Taylor & Francis Journals, vol. 22(5), pages 427-448, October.
    3. Nghiem, Hong Son & Nguyen, Ha Trong & Khanam, Rasheda & Connelly, Luke B., 2015. "Does school type affect cognitive and non-cognitive development in children? Evidence from Australian primary schools," Labour Economics, Elsevier, vol. 33(C), pages 55-65.
    4. Roland G. Fryer & Steven D. Levitt, 2004. "Understanding the Black-White Test Score Gap in the First Two Years of School," The Review of Economics and Statistics, MIT Press, vol. 86(2), pages 447-464, May.
    5. Elder, Todd & Jepsen, Christopher, 2014. "Are Catholic primary schools more effective than public primary schools?," Journal of Urban Economics, Elsevier, vol. 80(C), pages 28-38.
    6. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    7. Cheti Nicoletti & Birgitta Rabe, 2013. "Inequality in Pupils' Test Scores: How Much do Family, Sibling Type and Neighbourhood Matter?," Economica, London School of Economics and Political Science, vol. 80(318), pages 197-218, April.
    8. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    9. Fletcher, Jason & Kim, Taehoon, 2016. "The effects of changes in kindergarten entry age policies on educational achievement," Economics of Education Review, Elsevier, vol. 50(C), pages 45-62.
    10. Kevin Pugh & Gigi Foster, 2014. "Australia's National School Data and the ‘Big Data’ Revolution in Education Economics," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 47(2), pages 258-268, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paolo Cimbali & Marco De Leonardis & Alessio Fiume & Barbara La Ganga & Luciana Meoli & Marco Orlandi, 2023. "A decision-making rule to detect insufficient data quality - an application of statistical learning techniques to the non-performing loans banking data," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Post-pandemic landscape for central bank statistics, volume 58, Bank for International Settlements.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huong Thu Le & Ha Trong Nguyen, 2018. "The evolution of the gender test score gap through seventh grade: new insights from Australia using unconditional quantile regression and decomposition," IZA Journal of Labor Economics, Springer;Forschungsinstitut zur Zukunft der Arbeit GmbH (IZA), vol. 7(1), pages 1-42, December.
    2. Nguyen, Ha, 2015. "The evolution of the gender test score gap through seventh grade: New insights from Australia using quantile regression and decomposition," MPRA Paper 67586, University Library of Munich, Germany.
    3. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    4. Oxana Babecka Kucharcukova & Jan Bruha, 2016. "Nowcasting the Czech Trade Balance," Working Papers 2016/11, Czech National Bank.
    5. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    6. Hou-Tai Chang & Ping-Huai Wang & Wei-Fang Chen & Chen-Ju Lin, 2022. "Risk Assessment of Early Lung Cancer with LDCT and Health Examinations," IJERPH, MDPI, vol. 19(8), pages 1-12, April.
    7. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    8. Nicolaj N. Mühlbach, 2020. "Tree-based Synthetic Control Methods: Consequences of moving the US Embassy," CREATES Research Papers 2020-04, Department of Economics and Business Economics, Aarhus University.
    9. Wang, Qiao & Zhou, Wei & Cheng, Yonggang & Ma, Gang & Chang, Xiaolin & Miao, Yu & Chen, E, 2018. "Regularized moving least-square method and regularized improved interpolating moving least-square method with nonsingular moment matrices," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 120-145.
    10. Dmitriy Drusvyatskiy & Adrian S. Lewis, 2018. "Error Bounds, Quadratic Growth, and Linear Convergence of Proximal Methods," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 919-948, August.
    11. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    12. Lucian Belascu & Alexandra Horobet & Georgiana Vrinceanu & Consuela Popescu, 2021. "Performance Dissimilarities in European Union Manufacturing: The Effect of Ownership and Technological Intensity," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    13. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    14. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    15. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2022. "Specification Choices in Quantile Regression for Empirical Macroeconomics," Working Papers 22-25, Federal Reserve Bank of Cleveland.
    16. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    17. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    18. Yize Zhao & Matthias Chung & Brent A. Johnson & Carlos S. Moreno & Qi Long, 2016. "Hierarchical Feature Selection Incorporating Known and Novel Biological Information: Identifying Genomic Features Related to Prostate Cancer Recurrence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1427-1439, October.
    19. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    20. Enrico Bergamini & Georg Zachmann, 2020. "Exploring EU’s Regional Potential in Low-Carbon Technologies," Sustainability, MDPI, vol. 13(1), pages 1-28, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1807.07215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.