IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-02294328.html
   My bibliography  Save this paper

A probabilistic numerical method for optimal multiple switching problems in high dimension

Author

Listed:
  • René Aïd

    (FiME Lab - Laboratoire de Finance des Marchés d'Energie - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres - CREST - EDF R&D - EDF R&D - EDF - EDF, LEDa - Laboratoire d'Economie de Dauphine - IRD - Institut de Recherche pour le Développement - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres - CNRS - Centre National de la Recherche Scientifique)

  • Luciano Campi

    (CEREMADE - CEntre de REcherches en MAthématiques de la DEcision - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres - CNRS - Centre National de la Recherche Scientifique, LAGA - Laboratoire Analyse, Géométrie et Applications - UP8 - Université Paris 8 Vincennes-Saint-Denis - UP13 - Université Paris 13 - Institut Galilée - CNRS - Centre National de la Recherche Scientifique, CREST - Centre de Recherche en Économie et Statistique - ENSAI - Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz] - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - ENSAE Paris - École Nationale de la Statistique et de l'Administration Économique - CNRS - Centre National de la Recherche Scientifique)

  • Nicolas Langrené

    (LPMA - Laboratoire de Probabilités et Modèles Aléatoires - UPMC - Université Pierre et Marie Curie - Paris 6 - UPD7 - Université Paris Diderot - Paris 7 - CNRS - Centre National de la Recherche Scientifique, FiME Lab - Laboratoire de Finance des Marchés d'Energie - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres - CREST - EDF R&D - EDF R&D - EDF - EDF)

  • Huyên Pham

    (LPMA - Laboratoire de Probabilités et Modèles Aléatoires - UPMC - Université Pierre et Marie Curie - Paris 6 - UPD7 - Université Paris Diderot - Paris 7 - CNRS - Centre National de la Recherche Scientifique, CREST - Centre de Recherche en Économie et Statistique - ENSAI - Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz] - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - ENSAE Paris - École Nationale de la Statistique et de l'Administration Économique - CNRS - Centre National de la Recherche Scientifique)

Abstract

In this paper, we present a probabilistic numerical algorithm combining dynamic programming, Monte Carlo simulations, and local basis regressions to solve nonstationary optimal multiple switching problems in infinite horizon. We provide the rate of convergence of the method in terms of the time step used to discretize the problem, of the regression basis used to approximate conditional expectations, and of the truncating time horizon. To make the method viable for problems in high dimension and long time horizon, we extend a memory reduction method to the general Euler scheme, so that, when performing the numerical resolution, the storage of the Monte Carlo simulation paths is not needed. Then, we apply this algorithm to a model of optimal investment in power plants in dimension eight, i.e., with two different technologies and six random factors.

Suggested Citation

  • René Aïd & Luciano Campi & Nicolas Langrené & Huyên Pham, 2014. "A probabilistic numerical method for optimal multiple switching problems in high dimension," Post-Print hal-02294328, HAL.
  • Handle: RePEc:hal:journl:hal-02294328
    DOI: 10.1137/120897298
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aleksandar Arandjelovi'c & Pavel V. Shevchenko & Tomoko Matsui & Daisuke Murakami & Tor A. Myrvoll, 2024. "Solving stochastic climate-economy models: A deep least-squares Monte Carlo approach," Papers 2408.09642, arXiv.org.
    2. Alasseur, C. & Féron, O., 2018. "Structural price model for coupled electricity markets," Energy Economics, Elsevier, vol. 75(C), pages 104-119.
    3. Li Kai & Nyström Kaj & Olofsson Marcus, 2015. "Optimal switching problems under partial information," Monte Carlo Methods and Applications, De Gruyter, vol. 21(2), pages 91-120, June.
    4. Aïd, René & Basei, Matteo & Ferrari, Giorgio, 2023. "A Stationary Mean-Field Equilibrium Model of Irreversible Investment in a Two-Regime Economy," Center for Mathematical Economics Working Papers 679, Center for Mathematical Economics, Bielefeld University.
    5. Giorgia Callegaro & Luciano Campi & Valeria Giusto & Tiziano Vargiolu, 2017. "Utility indifference pricing and hedging for structured contracts in energy markets," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(2), pages 265-303, April.
    6. Rongju Zhang & Nicolas Langren'e & Yu Tian & Zili Zhu & Fima Klebaner & Kais Hamza, 2018. "Local Control Regression: Improving the Least Squares Monte Carlo Method for Portfolio Optimization," Papers 1803.11467, arXiv.org, revised Sep 2018.
    7. Magnus Perninge, 2020. "A finite horizon optimal switching problem with memory and application to controlled SDDEs," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(3), pages 465-500, June.
    8. Ivan Guo & Nicolas Langren'e & Jiahao Wu, 2023. "Simultaneous upper and lower bounds of American-style option prices with hedging via neural networks," Papers 2302.12439, arXiv.org, revised Nov 2024.
    9. Cortazar, Gonzalo & Naranjo, Lorenzo & Sainz, Felipe, 2021. "Optimal decision policy for real options under general Markovian dynamics," European Journal of Operational Research, Elsevier, vol. 288(2), pages 634-647.
    10. Ren'e Aid & Matteo Basei & Giorgio Ferrari, 2023. "A Stationary Mean-Field Equilibrium Model of Irreversible Investment in a Two-Regime Economy," Papers 2305.00541, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-02294328. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.