IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb649/sfb649dp2008-018.html
   My bibliography  Save this paper

Solving, estimating and selecting nonlinear dynamic models without the curse of dimensionality

Author

Listed:
  • Winschel, Viktor
  • Krätzig, Markus

Abstract

We present a comprehensive framework for Bayesian estimation of structural nonlinear dynamic economic models on sparse grids. The Smolyak operator underlying the sparse grids approach frees global approximation from the curse of dimensionality and we apply it to a Chebyshev approximation of the model solution. The operator also eliminates the curse from Gaussian quadrature and we use it for the integrals arising from rational expectations and in three new nonlinear state space filters. The filters substantially decrease the computational burden compared to the sequential importance resampling particle filter. The posterior of the structural parameters is estimated by a new Metropolis-Hastings algorithm with mixing parallel sequences. The parallel extension improves the global maximization property of the algorithm, simplifies the choice of the innovation variances, allows for unbiased convergence diagnostics and for a simple implementation of the estimation on parallel computers. Finally, we provide all algorithms in the open source software JBendge for the solution and estimation of a general class of models.

Suggested Citation

  • Winschel, Viktor & Krätzig, Markus, 2008. "Solving, estimating and selecting nonlinear dynamic models without the curse of dimensionality," SFB 649 Discussion Papers 2008-018, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  • Handle: RePEc:zbw:sfb649:sfb649dp2008-018
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/25260/1/55875371X.PDF
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Amisano, Gianni & Tristani, Oreste, 2010. "Euro area inflation persistence in an estimated nonlinear DSGE model," Journal of Economic Dynamics and Control, Elsevier, vol. 34(10), pages 1837-1858, October.
    2. Kim, Jinill & Kim, Sunghyun Henry, 2003. "Spurious welfare reversals in international business cycle models," Journal of International Economics, Elsevier, vol. 60(2), pages 471-500, August.
    3. Kenneth L. Judd, 1998. "Numerical Methods in Economics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262100711, April.
    4. Heiss, Florian & Winschel, Viktor, 2008. "Likelihood approximation by numerical integration on sparse grids," Journal of Econometrics, Elsevier, vol. 144(1), pages 62-80, May.
    5. Alessandro Cigno & Annalisa Luporini, 2018. "On the evolution of individual preferences and family rules," Working Paper series 18-07, Rimini Centre for Economic Analysis.
    6. Krueger, Dirk & Kubler, Felix, 2004. "Computing equilibrium in OLG models with stochastic production," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1411-1436, April.
    7. Gaspar, Jess & L. Judd, Kenneth, 1997. "Solving Large-Scale Rational-Expectations Models," Macroeconomic Dynamics, Cambridge University Press, vol. 1(1), pages 45-75, January.
    8. John Geweke, 1999. "Using simulation methods for bayesian econometric models: inference, development,and communication," Econometric Reviews, Taylor & Francis Journals, vol. 18(1), pages 1-73.
    9. Schmitt-Grohe, Stephanie & Uribe, Martin, 2004. "Solving dynamic general equilibrium models using a second-order approximation to the policy function," Journal of Economic Dynamics and Control, Elsevier, vol. 28(4), pages 755-775, January.
    10. Aruoba, S. Boragan & Fernandez-Villaverde, Jesus & Rubio-Ramirez, Juan F., 2006. "Comparing solution methods for dynamic equilibrium economies," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2477-2508, December.
    11. Klein, Paul, 2000. "Using the generalized Schur form to solve a multivariate linear rational expectations model," Journal of Economic Dynamics and Control, Elsevier, vol. 24(10), pages 1405-1423, September.
    12. Juillard, Michel, 1996. "Dynare : a program for the resolution and simulation of dynamic models with forward variables through the use of a relaxation algorithm," CEPREMAP Working Papers (Couverture Orange) 9602, CEPREMAP.
    13. Judd, Kenneth L. & Guu, Sy-Ming, 1997. "Asymptotic methods for aggregate growth models," Journal of Economic Dynamics and Control, Elsevier, vol. 21(6), pages 1025-1042, June.
    14. John Geweke, 1999. "Using Simulation Methods for Bayesian Econometric Models," Computing in Economics and Finance 1999 832, Society for Computational Economics.
    15. Gianni Amisano & Oreste Tristani, 2006. "Euro area inflation persistence in an estimated nonlinear," Computing in Economics and Finance 2006 347, Society for Computational Economics.
    16. Fernandez-Villaverde, Jesus & Francisco Rubio-Ramirez, Juan, 2004. "Comparing dynamic equilibrium models to data: a Bayesian approach," Journal of Econometrics, Elsevier, vol. 123(1), pages 153-187, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tommaso Proietti & Alessandra Luati, 2013. "Maximum likelihood estimation of time series models: the Kalman filter and beyond," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 15, pages 334-362, Edward Elgar Publishing.
    2. Fernández-Villaverde, Jesús & Gordon, Grey & Guerrón-Quintana, Pablo & Rubio-Ramírez, Juan F., 2015. "Nonlinear adventures at the zero lower bound," Journal of Economic Dynamics and Control, Elsevier, vol. 57(C), pages 182-204.
    3. Posch, Olaf, 2018. "Resurrecting the New-Keynesian Model: (Un)conventional Policy and the Taylor rule," VfS Annual Conference 2018 (Freiburg, Breisgau): Digital Economy 181616, Verein für Socialpolitik / German Economic Association.
    4. Andrea Bastianin & Alessandro Lanza & Matteo Manera, 2018. "Economic impacts of El Niño southern oscillation: evidence from the Colombian coffee market," Agricultural Economics, International Association of Agricultural Economists, vol. 49(5), pages 623-633, September.
    5. Judd, Kenneth L. & Maliar, Lilia & Maliar, Serguei & Valero, Rafael, 2014. "Smolyak method for solving dynamic economic models: Lagrange interpolation, anisotropic grid and adaptive domain," Journal of Economic Dynamics and Control, Elsevier, vol. 44(C), pages 92-123.
    6. Ledenyov, Dimitri O. & Ledenyov, Viktor O., 2015. "Wave function method to forecast foreign currencies exchange rates at ultra high frequency electronic trading in foreign currencies exchange markets," MPRA Paper 67470, University Library of Munich, Germany.
    7. Dan Cao & Wenlan Luo & Guangyu Nie, 2023. "Global GDSGE Models," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 51, pages 199-225, December.
    8. repec:hum:wpaper:sfb649dp2008-034 is not listed on IDEAS
    9. Daniel Harenberg & Stefano Marelli & Bruno Sudret & Viktor Winschel, 2019. "Uncertainty quantification and global sensitivity analysis for economic models," Quantitative Economics, Econometric Society, vol. 10(1), pages 1-41, January.
    10. Arne Risa Hole & Hong Il Yoo, 2017. "The use of heuristic optimization algorithms to facilitate maximum simulated likelihood estimation of random parameter logit models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(5), pages 997-1013, November.
    11. Karamé, Frédéric, 2018. "A new particle filtering approach to estimate stochastic volatility models with Markov-switching," Econometrics and Statistics, Elsevier, vol. 8(C), pages 204-230.
    12. Rongju Zhang & Nicolas Langren'e & Yu Tian & Zili Zhu & Fima Klebaner & Kais Hamza, 2018. "Local Control Regression: Improving the Least Squares Monte Carlo Method for Portfolio Optimization," Papers 1803.11467, arXiv.org, revised Sep 2018.
    13. Pichler, Paul, 2011. "Solving the multi-country Real Business Cycle model using a monomial rule Galerkin method," Journal of Economic Dynamics and Control, Elsevier, vol. 35(2), pages 240-251, February.
    14. Michael Creel & Dennis Kristensen, "undated". "Indirect Likelihood Inference," Working Papers 558, Barcelona School of Economics.
    15. Rongju Zhang & Nicolas Langren'e & Yu Tian & Zili Zhu & Fima Klebaner & Kais Hamza, 2016. "Dynamic portfolio optimization with liquidity cost and market impact: a simulation-and-regression approach," Papers 1610.07694, arXiv.org, revised Jun 2019.
    16. Christophe Gouel, 2013. "Comparing Numerical Methods for Solving the Competitive Storage Model," Computational Economics, Springer;Society for Computational Economics, vol. 41(2), pages 267-295, February.
    17. Peter Schober & Julian Valentin & Dirk Pflüger, 2022. "Solving High-Dimensional Dynamic Portfolio Choice Models with Hierarchical B-Splines on Sparse Grids," Computational Economics, Springer;Society for Computational Economics, vol. 59(1), pages 185-224, January.
    18. Ledenyov, Dimitri O. & Ledenyov, Viktor O., 2013. "On the Stratonovich – Kalman - Bucy filtering algorithm application for accurate characterization of financial time series with use of state-space model by central banks," MPRA Paper 50235, University Library of Munich, Germany.
    19. Marc Bourreau & Yutec Sun, 2022. "Competition and Quality: Evidence from the Entry of Mobile Network Service," Working Papers 22-04, NET Institute.
    20. Marlon Azinovic & Luca Gaegauf & Simon Scheidegger, 2022. "Deep Equilibrium Nets," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(4), pages 1471-1525, November.
    21. Dan S. Rickman, 2010. "Modern Macroeconomics And Regional Economic Modeling," Journal of Regional Science, Wiley Blackwell, vol. 50(1), pages 23-41, February.
    22. Michael Creel & Dennis Kristensen, 2013. "Indirect Likelihood Inference (revised)," UFAE and IAE Working Papers 931.13, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
    23. Dennis, Richard, 2024. "Using a hyperbolic cross to solve non-linear macroeconomic models," Journal of Economic Dynamics and Control, Elsevier, vol. 163(C).
    24. Winschel, Viktor & Krätzig, Markus, 2008. "JBendge: An object-oriented system for solving, estimating and selecting nonlinear dynamic models," SFB 649 Discussion Papers 2008-034, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    25. Sun, Yutec & Ishihara, Masakazu, 2019. "A computationally efficient fixed point approach to dynamic structural demand estimation," Journal of Econometrics, Elsevier, vol. 208(2), pages 563-584.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:hum:wpaper:sfb649dp2008-018 is not listed on IDEAS
    2. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    3. Viktors Ajevskis, 2019. "Generalised Impulse Response Function as a Perturbation of a Global Solution to DSGE Models," Working Papers 2019/04, Latvijas Banka.
    4. Ajevskis Viktors, 2017. "Semi-global solutions to DSGE models: perturbation around a deterministic path," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 21(2), pages 1-28, April.
    5. Aruoba, S. Boragan & Fernandez-Villaverde, Jesus & Rubio-Ramirez, Juan F., 2006. "Comparing solution methods for dynamic equilibrium economies," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2477-2508, December.
    6. Lan, Hong & Meyer-Gohde, Alexander, 2013. "Solving DSGE models with a nonlinear moving average," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2643-2667.
    7. Sungbae An & Frank Schorfheide, 2007. "Bayesian Analysis of DSGE Models," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 113-172.
    8. Levintal, Oren, 2017. "Fifth-order perturbation solution to DSGE models," Journal of Economic Dynamics and Control, Elsevier, vol. 80(C), pages 1-16.
    9. Dana Galizia, 2021. "Saddle cycles: Solving rational expectations models featuring limit cycles (or chaos) using perturbation methods," Quantitative Economics, Econometric Society, vol. 12(3), pages 869-901, July.
    10. Lombardi, Marco J. & Sgherri, Silvia, 2007. "(Un)naturally low? Sequential Monte Carlo tracking of the US natural interest rate," Working Paper Series 794, European Central Bank.
    11. Alexander Richter & Nathaniel Throckmorton & Todd Walker, 2014. "Accuracy, Speed and Robustness of Policy Function Iteration," Computational Economics, Springer;Society for Computational Economics, vol. 44(4), pages 445-476, December.
    12. Lilia Maliar & Serguei Maliar & John B. Taylor & Inna Tsener, 2020. "A tractable framework for analyzing a class of nonstationary Markov models," Quantitative Economics, Econometric Society, vol. 11(4), pages 1289-1323, November.
    13. Christopher A. Sims & Jinill Kim & Sunghyun Kim, 2003. "Calculating and Using Second Order Accurate Solution of Discrete Time Dynamic Equilibrium Models," Computing in Economics and Finance 2003 162, Society for Computational Economics.
    14. Fernández-Villaverde, Jesús & Guerrón-Quintana, Pablo & Rubio-Ramírez, Juan F., 2015. "Estimating dynamic equilibrium models with stochastic volatility," Journal of Econometrics, Elsevier, vol. 185(1), pages 216-229.
    15. Francesco Bianchi & Giovanni Nicolò, 2021. "A generalized approach to indeterminacy in linear rational expectations models," Quantitative Economics, Econometric Society, vol. 12(3), pages 843-868, July.
    16. Serguei Maliar & John Taylor & Lilia Maliar, 2016. "The Impact of Alternative Transitions to Normalized Monetary Policy," 2016 Meeting Papers 794, Society for Economic Dynamics.
    17. Ajevskis, Viktors, 2019. "Nonlocal Solutions To Dynamic Equilibrium Models: The Approximate Stable Manifolds Approach," Macroeconomic Dynamics, Cambridge University Press, vol. 23(6), pages 2544-2571, September.
    18. Ajevskis, Viktors, 2014. "Global Solutions to DSGE Models as a Perturbation of a Deterministic Path," MPRA Paper 55145, University Library of Munich, Germany.
    19. Francisco (F.) Blasques & Marc Nientker, 2019. "Transformed Perturbation Solutions for Dynamic Stochastic General Equilibrium Models," Tinbergen Institute Discussion Papers 19-012/III, Tinbergen Institute, revised 09 Feb 2020.
    20. Flury, Thomas & Shephard, Neil, 2011. "Bayesian Inference Based Only On Simulated Likelihood: Particle Filter Analysis Of Dynamic Economic Models," Econometric Theory, Cambridge University Press, vol. 27(05), pages 933-956, October.

    More about this item

    Keywords

    Dynamic Stochastic General Equilibrium (DSGE) Models; Baye- sian Time Series Econometrics; Curse of Dimensionality;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C68 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computable General Equilibrium Models
    • C87 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Econometric Software

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb649:sfb649dp2008-018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sohubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.