IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2408.09642.html
   My bibliography  Save this paper

Solving stochastic climate-economy models: A deep least-squares Monte Carlo approach

Author

Listed:
  • Aleksandar Arandjelovi'c
  • Pavel V. Shevchenko
  • Tomoko Matsui
  • Daisuke Murakami
  • Tor A. Myrvoll

Abstract

Stochastic versions of recursive integrated climate-economy assessment models are essential for studying and quantifying policy decisions under uncertainty. However, as the number of stochastic shocks increases, solving these models as dynamic programming problems using deterministic grid methods becomes computationally infeasible, and simulation-based methods are needed. The least-squares Monte Carlo (LSMC) method has become popular for solving optimal stochastic control problems in quantitative finance. In this paper, we extend the application of the LSMC method to stochastic climate-economy models. We exemplify this approach using a stochastic version of the DICE model with all five main uncertainties discussed in the literature. To address the complexity and high dimensionality of these models, we incorporate deep neural network approximations in place of standard regression techniques within the LSMC framework. Our results demonstrate that the deep LSMC method can be used to efficiently derive optimal policies for climate-economy models in the presence of uncertainty.

Suggested Citation

  • Aleksandar Arandjelovi'c & Pavel V. Shevchenko & Tomoko Matsui & Daisuke Murakami & Tor A. Myrvoll, 2024. "Solving stochastic climate-economy models: A deep least-squares Monte Carlo approach," Papers 2408.09642, arXiv.org.
  • Handle: RePEc:arx:papers:2408.09642
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2408.09642
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    2. Nordhaus, William D & Yang, Zili, 1996. "A Regional Dynamic General-Equilibrium Model of Alternative Climate-Change Strategies," American Economic Review, American Economic Association, vol. 86(4), pages 741-765, September.
    3. William Nordhaus, 2018. "Projections and Uncertainties about Climate Change in an Era of Minimal Climate Policies," American Economic Journal: Economic Policy, American Economic Association, vol. 10(3), pages 333-360, August.
    4. Aïd, René & Campi, Luciano & Langrené, Nicolas & Pham, Huyên, 2014. "A probabilistic numerical method for optimal multiple switching problems in high dimension," LSE Research Online Documents on Economics 63011, London School of Economics and Political Science, LSE Library.
    5. Martin L. Weitzman, 2011. "Fat-Tailed Uncertainty in the Economics of Catastrophic Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 5(2), pages 275-292, Summer.
    6. Christian Traeger, 2014. "A 4-Stated DICE: Quantitatively Addressing Uncertainty Effects in Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 59(1), pages 1-37, September.
    7. Kelly, David L. & Kolstad, Charles D., 1999. "Bayesian learning, growth, and pollution," Journal of Economic Dynamics and Control, Elsevier, vol. 23(4), pages 491-518, February.
    8. Leach, Andrew J., 2007. "The climate change learning curve," Journal of Economic Dynamics and Control, Elsevier, vol. 31(5), pages 1728-1752, May.
    9. René Aïd & Luciano Campi & Nicolas Langrené & Huyên Pham, 2014. "A probabilistic numerical method for optimal multiple switching problems in high dimension," Post-Print hal-02294328, HAL.
    10. Kharroubi Idris & Langrené Nicolas & Pham Huyên, 2014. "A numerical algorithm for fully nonlinear HJB equations: An approach by control randomization," Monte Carlo Methods and Applications, De Gruyter, vol. 20(2), pages 145-165, June.
    11. Ikefuji, Masako & Laeven, Roger J.A. & Magnus, Jan R. & Muris, Chris, 2020. "Expected utility and catastrophic risk in a stochastic economy–climate model," Journal of Econometrics, Elsevier, vol. 214(1), pages 110-129.
    12. Kelly, David L & Kolstad, Charles D, 2001. "Solving Infinite Horizon Growth Models with an Environmental Sector," Computational Economics, Springer;Society for Computational Economics, vol. 18(2), pages 217-231, October.
    13. repec:dau:papers:123456789/12195 is not listed on IDEAS
    14. Thomas S. Lontzek & Yongyang Cai & Kenneth L. Judd & Timothy M. Lenton, 2015. "Stochastic integrated assessment of climate tipping points indicates the need for strict climate policy," Nature Climate Change, Nature, vol. 5(5), pages 441-444, May.
    15. William D. Nordhaus, 1992. "The 'DICE' Model: Background and Structure of a Dynamic Integrated Climate-Economy Model of the Economics of Global Warming," Cowles Foundation Discussion Papers 1009, Cowles Foundation for Research in Economics, Yale University.
    16. Denis Belomestny, 2011. "Pricing Bermudan options by nonparametric regression: optimal rates of convergence for lower estimates," Finance and Stochastics, Springer, vol. 15(4), pages 655-683, December.
    17. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ikefuji, Masako & Laeven, Roger J.A. & Magnus, Jan R. & Muris, Chris, 2020. "Expected utility and catastrophic risk in a stochastic economy–climate model," Journal of Econometrics, Elsevier, vol. 214(1), pages 110-129.
    2. Pavel V. Shevchenko & Daisuke Murakami & Tomoko Matsui & Tor A. Myrvoll, 2022. "Impact of COVID-19 type events on the economy and climate under the stochastic DICE model," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 24(3), pages 459-476, July.
    3. J. Farmer & Cameron Hepburn & Penny Mealy & Alexander Teytelboym, 2015. "A Third Wave in the Economics of Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 329-357, October.
    4. Rongju Zhang & Nicolas Langren'e & Yu Tian & Zili Zhu & Fima Klebaner & Kais Hamza, 2018. "Local Control Regression: Improving the Least Squares Monte Carlo Method for Portfolio Optimization," Papers 1803.11467, arXiv.org, revised Sep 2018.
    5. García-León, David, 2016. "Adapting to Climate Change: an Analysis under Uncertainty," EIA: Climate Change: Economic Impacts and Adaptation 232216, Fondazione Eni Enrico Mattei (FEEM).
    6. Ivan Guo & Nicolas Langren'e & Jiahao Wu, 2023. "Simultaneous upper and lower bounds of American option prices with hedging via neural networks," Papers 2302.12439, arXiv.org, revised Apr 2024.
    7. Eric Jondeau & Grégory Levieuge & Jean-Guillaume Sahuc & Gauthier Vermandel, 2023. "Environmental Subsidies to Mitigate Net-Zero Transition Costs," Working papers 910, Banque de France.
    8. Lemoine, Derek & Traeger, Christian P., 2016. "Ambiguous tipping points," Journal of Economic Behavior & Organization, Elsevier, vol. 132(PB), pages 5-18.
    9. Zhiyi Shen & Chengguo Weng, 2019. "A Backward Simulation Method for Stochastic Optimal Control Problems," Papers 1901.06715, arXiv.org.
    10. In Chang Hwang & Richard S.J. Tol & Marjan W. Hofkes, 2013. "Active Learning about Climate Change," Working Paper Series 6513, Department of Economics, University of Sussex Business School.
    11. Derek Lemoine & Christian Traeger, 2014. "Watch Your Step: Optimal Policy in a Tipping Climate," American Economic Journal: Economic Policy, American Economic Association, vol. 6(1), pages 137-166, February.
    12. Cortazar, Gonzalo & Naranjo, Lorenzo & Sainz, Felipe, 2021. "Optimal decision policy for real options under general Markovian dynamics," European Journal of Operational Research, Elsevier, vol. 288(2), pages 634-647.
    13. Jensen, Svenn & Traeger, Christian P., 2014. "Optimal climate change mitigation under long-term growth uncertainty: Stochastic integrated assessment and analytic findings," European Economic Review, Elsevier, vol. 69(C), pages 104-125.
    14. De Bruin, Kelly & Kiran Krishnamurthy, Chandra, 2021. "Optimal Climate Policy with Fat-tailed Uncertainty: What the Models Can Tell Us," Papers WP697, Economic and Social Research Institute (ESRI).
    15. Richard S. J. Tol & In Chang Hwang & Frédéric Reynès, 2012. "The Effect of Learning on Climate Policy under Fat-tailed Uncertainty," Working Paper Series 5312, Department of Economics, University of Sussex Business School.
    16. Fabian Dickmann & Nikolaus Schweizer, 2014. "Faster Comparison of Stopping Times by Nested Conditional Monte Carlo," Papers 1402.0243, arXiv.org.
    17. Eric Jondeau & Grégory Levieuge & Jean-Guillaume Sahuc & Gauthier Vermandel, 2022. "Environmental Subsidies to Mitigate Transition risk," EconomiX Working Papers 2022-21, University of Paris Nanterre, EconomiX.
    18. Luke G. Fitzpatrick & David L. Kelly, 2017. "Probabilistic Stabilization Targets," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(2), pages 611-657.
    19. Lemoine, Derek M. & Traeger, Christian P., 2010. "Tipping Points and Ambiguity in the Economics of Climate Change," CUDARE Working Papers 98127, University of California, Berkeley, Department of Agricultural and Resource Economics.
    20. Bünyamin Erkan & Jean-Luc Prigent, 2020. "About Long-Term Cross-Currency Bermuda Swaption Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 56(1), pages 239-262, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2408.09642. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.