IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1801.03873.html
   My bibliography  Save this paper

Characterisation of honest times and optional semimartingales of class-($\Sigma$)

Author

Listed:
  • Libo Li

Abstract

Given a finite honest time, we first show that the associated Az\'ema optional supermartingale can be expressed as the drawdown and the relative drawdown of some local optional supermartingales with continuous running supremum. The relative drawdown representation then allows us to provide a characterisation of finite honest times using a family of non-negative local optional supermartingales with continuous running supremum which converges to zero at infinity. Then we extend the notion of semimartingales of class-$(\Sigma)$ by allowing for jumps in its finite variation part of the semimartingale decomposition. This enables one to establish the Madan-Roynette-Yor option pricing formula for a larger class of processes, and finally, we apply the extended formula to the construction of finite honest times.

Suggested Citation

  • Libo Li, 2018. "Characterisation of honest times and optional semimartingales of class-($\Sigma$)," Papers 1801.03873, arXiv.org, revised Dec 2021.
  • Handle: RePEc:arx:papers:1801.03873
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1801.03873
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kardaras, Constantinos, 2014. "On the characterisation of honest times that avoid all stopping times," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 373-384.
    2. Claudio Fontana & Monique Jeanblanc & Shiqi Song, 2014. "On arbitrages arising with honest times," Finance and Stochastics, Springer, vol. 18(3), pages 515-543, July.
    3. Jeanblanc, Monique & Song, Shiqi, 2011. "Random times with given survival probability and their -martingale decomposition formula," Stochastic Processes and their Applications, Elsevier, vol. 121(6), pages 1389-1410, June.
    4. Jeanblanc, Monique & Song, Shiqi, 2011. "An explicit model of default time with given survival probability," Stochastic Processes and their Applications, Elsevier, vol. 121(8), pages 1678-1704, August.
    5. Madan, D. & Roynette, B. & Yor, Marc, 2008. "Option prices as probabilities," Finance Research Letters, Elsevier, vol. 5(2), pages 79-87, June.
    6. Li, Libo & Rutkowski, Marek, 2012. "Random times and multiplicative systems," Stochastic Processes and their Applications, Elsevier, vol. 122(5), pages 2053-2077.
    7. Patrick Cheridito & Ashkan Nikeghbali & Eckhard Platen, 2012. "Processes of Class Sigma, Last Passage Times, and Drawdowns," Published Paper Series 2012-4, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Libo Li, 2022. "Characterisation of Honest Times and Optional Semimartingales of Class- $$(\Sigma )$$ ( Σ )," Journal of Theoretical Probability, Springer, vol. 35(4), pages 2145-2175, December.
    2. Aksamit, Anna & Jeanblanc, Monique & Rutkowski, Marek, 2019. "Integral representations of martingales for progressive enlargements of filtrations," Stochastic Processes and their Applications, Elsevier, vol. 129(4), pages 1229-1258.
    3. Claudio Fontana & Monique Jeanblanc & Shiqi Song, 2014. "On arbitrages arising with honest times," Finance and Stochastics, Springer, vol. 18(3), pages 515-543, July.
    4. Li, Libo & Rutkowski, Marek, 2012. "Random times and multiplicative systems," Stochastic Processes and their Applications, Elsevier, vol. 122(5), pages 2053-2077.
    5. Kreher, Dörte, 2017. "Change of measure up to a random time: Details," Stochastic Processes and their Applications, Elsevier, vol. 127(5), pages 1565-1598.
    6. Hongzhong Zhang, 2018. "Stochastic Drawdowns," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 10078, August.
    7. Lin, Weiqiang, 2014. "The politics of flying: aeromobile frictions in a mobile city," Journal of Transport Geography, Elsevier, vol. 38(C), pages 92-99.
    8. Ernst, Philip A. & Rogers, L.C.G. & Zhou, Quan, 2017. "The value of foresight," Stochastic Processes and their Applications, Elsevier, vol. 127(12), pages 3913-3927.
    9. Amel Bentata & Marc Yor, 2008. "From Black-Scholes and Dupire formulae to last passage times of local martingales. Part A : The infinite time horizon," Papers 0806.0239, arXiv.org.
    10. Vladimir Cherny & Jan Obłój, 2013. "Portfolio optimisation under non-linear drawdown constraints in a semimartingale financial model," Finance and Stochastics, Springer, vol. 17(4), pages 771-800, October.
    11. Fontana, Claudio & Grbac, Zorana & Jeanblanc, Monique & Li, Qinghua, 2014. "Information, no-arbitrage and completeness for asset price models with a change point," Stochastic Processes and their Applications, Elsevier, vol. 124(9), pages 3009-3030.
    12. Cui, Zhenyu & Nguyen, Duy, 2016. "Omega diffusion risk model with surplus-dependent tax and capital injections," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 150-161.
    13. Lingjiong Zhu, 2015. "Short maturity options for Azéma–Yor martingales," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 2(04), pages 1-32, December.
    14. Konstantinos Konstantaras & Vasilios Sogiakas, 2019. "Is stock liquidity transferred and upgraded in acquisitions? Evidence from liquidity synergies in US freeze-outs," Annals of Operations Research, Springer, vol. 282(1), pages 179-216, November.
    15. Martin Larsson, 2013. "Non-Equivalent Beliefs and Subjective Equilibrium Bubbles," Papers 1306.5082, arXiv.org.
    16. Anna Aksamit & Tahir Choulli & Jun Deng & Monique Jeanblanc, 2018. "No-arbitrage under a class of honest times," Finance and Stochastics, Springer, vol. 22(1), pages 127-159, January.
    17. Ashkan Nikeghbali & Eckhard Platen, 2008. "On Honest Times in Financial Modeling," Research Paper Series 229, Quantitative Finance Research Centre, University of Technology, Sydney.
    18. Ashkan Nikeghbali & Eckhard Platen, 2013. "A reading guide for last passage times with financial applications in view," Finance and Stochastics, Springer, vol. 17(3), pages 615-640, July.
    19. Yuri Imamura, 2011. "A remark on static hedging of options written on the last exit time," Review of Derivatives Research, Springer, vol. 14(3), pages 333-347, October.
    20. Salmerón Garrido, José Antonio & Nunno, Giulia Di & D'Auria, Bernardo, 2022. "Before and after default: information and optimal portfolio via anticipating calculus," DES - Working Papers. Statistics and Econometrics. WS 35411, Universidad Carlos III de Madrid. Departamento de Estadística.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1801.03873. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.