IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v121y2011i6p1389-1410.html
   My bibliography  Save this article

Random times with given survival probability and their -martingale decomposition formula

Author

Listed:
  • Jeanblanc, Monique
  • Song, Shiqi

Abstract

Given a filtered probability space , an -adapted continuous increasing process [Lambda] and a positive local martingale N such that satisfies Zt =0, we construct probability measures and a random time [tau] on an extension of , such that the survival probability of [tau], i.e., is equal to Zt for t>=0. We show that there exist several solutions and that an increasing family of martingales, combined with a stochastic differential equation, constitutes a natural way to construct these solutions. Our extended space will be equipped with the enlarged filtration where is the [sigma]-field completed with the -negligible sets. We show that all martingales remain -semimartingales and we give an explicit semimartingale decomposition formula. Finally, we show how this decomposition formula is intimately linked with the stochastic differential equation introduced before.

Suggested Citation

  • Jeanblanc, Monique & Song, Shiqi, 2011. "Random times with given survival probability and their -martingale decomposition formula," Stochastic Processes and their Applications, Elsevier, vol. 121(6), pages 1389-1410, June.
  • Handle: RePEc:eee:spapps:v:121:y:2011:i:6:p:1389-1410
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(11)00062-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El Karoui, Nicole & Jeanblanc, Monique & Jiao, Ying, 2010. "What happens after a default: The conditional density approach," Stochastic Processes and their Applications, Elsevier, vol. 120(7), pages 1011-1032, July.
    2. Jeanblanc, Monique & Le Cam, Yann, 2009. "Progressive enlargement of filtrations with initial times," Stochastic Processes and their Applications, Elsevier, vol. 119(8), pages 2523-2543, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aksamit, Anna & Jeanblanc, Monique & Rutkowski, Marek, 2019. "Integral representations of martingales for progressive enlargements of filtrations," Stochastic Processes and their Applications, Elsevier, vol. 129(4), pages 1229-1258.
    2. Li, Libo & Rutkowski, Marek, 2012. "Random times and multiplicative systems," Stochastic Processes and their Applications, Elsevier, vol. 122(5), pages 2053-2077.
    3. Libo Li, 2018. "Characterisation of honest times and optional semimartingales of class-($\Sigma$)," Papers 1801.03873, arXiv.org, revised Dec 2021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fontana, Claudio, 2018. "The strong predictable representation property in initially enlarged filtrations under the density hypothesis," Stochastic Processes and their Applications, Elsevier, vol. 128(3), pages 1007-1033.
    2. Jeanblanc, Monique & Song, Shiqi, 2015. "Martingale representation property in progressively enlarged filtrations," Stochastic Processes and their Applications, Elsevier, vol. 125(11), pages 4242-4271.
    3. Ying Jiao & Huyên Pham, 2011. "Optimal investment with counterparty risk: a default-density model approach," Finance and Stochastics, Springer, vol. 15(4), pages 725-753, December.
    4. Stéphane Crépey & Shiqi Song, 2014. "Counterparty risk and funding: Immersion and beyond," Working Papers hal-00989062, HAL.
    5. Antonella Calzolari & Barbara Torti, 2022. "A Note on the Strong Predictable Representation Property and Enlargement of Filtration," Mathematics, MDPI, vol. 10(10), pages 1-12, May.
    6. Agostino Capponi & José Figueroa-López & Andrea Pascucci, 2015. "Dynamic credit investment in partially observed markets," Finance and Stochastics, Springer, vol. 19(4), pages 891-939, October.
    7. Fontana, Claudio & Grbac, Zorana & Jeanblanc, Monique & Li, Qinghua, 2014. "Information, no-arbitrage and completeness for asset price models with a change point," Stochastic Processes and their Applications, Elsevier, vol. 124(9), pages 3009-3030.
    8. Nicole El Karoui & Monique Jeanblanc & Ying Jiao, 2013. "Density approach in modelling multi-defaults," Working Papers hal-00870492, HAL.
    9. Lijun Bo & Ying Jiao & Xuewei Yang, 2011. "Credit derivatives pricing with default density term structure modelled by L\'evy random fields," Papers 1112.2952, arXiv.org.
    10. Nicole El Karoui & Monique Jeanblanc & Ying Jiao, 2017. "Dynamics of multivariate default system in random environment," Post-Print hal-01205753, HAL.
    11. Joshua Aurand & Yu-Jui Huang, 2019. "Epstein-Zin Utility Maximization on a Random Horizon," Papers 1903.08782, arXiv.org, revised May 2023.
    12. Stephane Goutte & Armand Ngoupeyou, 2012. "Optimization problem and mean variance hedging on defaultable claims," Papers 1209.5953, arXiv.org.
    13. Ying Jiao & Yahia Salhi & Shihua Wang, 2022. "Dynamic Bivariate Mortality Modelling," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 917-938, June.
    14. Tim Leung & Michael Ludkovski, 2010. "Optimal Timing to Purchase Options," Papers 1008.3650, arXiv.org, revised Apr 2011.
    15. Huayuan Dong & Paolo Guasoni & Eberhard Mayerhofer, 2023. "Rogue traders," Finance and Stochastics, Springer, vol. 27(3), pages 539-603, July.
    16. Aksamit, Anna & Jeanblanc, Monique & Rutkowski, Marek, 2019. "Integral representations of martingales for progressive enlargements of filtrations," Stochastic Processes and their Applications, Elsevier, vol. 129(4), pages 1229-1258.
    17. Jeanblanc, Monique & Song, Shiqi, 2011. "An explicit model of default time with given survival probability," Stochastic Processes and their Applications, Elsevier, vol. 121(8), pages 1678-1704, August.
    18. Paolo Tella, 2022. "On the Propagation of the Weak Representation Property in Independently Enlarged Filtrations: The General Case," Journal of Theoretical Probability, Springer, vol. 35(4), pages 2194-2216, December.
    19. Alessandro Calvia & Emanuela Rosazza Gianin, 2019. "Risk measures and progressive enlargement of filtration: a BSDE approach," Papers 1904.13257, arXiv.org, revised Mar 2020.
    20. Salmerón Garrido, José Antonio & Nunno, Giulia Di & D'Auria, Bernardo, 2022. "Before and after default: information and optimal portfolio via anticipating calculus," DES - Working Papers. Statistics and Econometrics. WS 35411, Universidad Carlos III de Madrid. Departamento de Estadística.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:121:y:2011:i:6:p:1389-1410. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.