IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v559y2020ics0378437120305483.html
   My bibliography  Save this article

From a stochastic model of economic exchange to measures of inequality

Author

Listed:
  • Dashti Moghaddam, M.
  • Mills, Jeffrey
  • Serota, R.A.

Abstract

This paper connects the Generalized Beta 2 distribution with a plausible stochastic model of economic exchange (Hertzler, 2003). The GB2 is the steady-state equilibrium distribution of this model of exchange which, along with unique properties of the GB2, provides an explanation for its success in describing both income and wealth distributions, and financial market volatility. This brings about a better understanding of the parametric dependencies of the distribution and quantities derived from it, such as the Gini, Hoover and Theil inequality measures. Our examination of the properties of these measures in relation to the GB2 motivates the proposal of an alternative measure of inequality which is less prone to extremes stemming from the fat tails of the GB2. Maximum likelihood estimation methods are applied to housing sales prices as an application and to validate more accurate measures of goodness of fit, such as Kolmogorov–Smirnov statistic.

Suggested Citation

  • Dashti Moghaddam, M. & Mills, Jeffrey & Serota, R.A., 2020. "From a stochastic model of economic exchange to measures of inequality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
  • Handle: RePEc:eee:phsmap:v:559:y:2020:i:c:s0378437120305483
    DOI: 10.1016/j.physa.2020.125047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120305483
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.125047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nelson, Daniel B., 1990. "ARCH models as diffusion approximations," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 7-38.
    2. Adrian Dragulescu & Victor Yakovenko, 2002. "Probability distribution of returns in the Heston model with stochastic volatility," Quantitative Finance, Taylor & Francis Journals, vol. 2(6), pages 443-453.
    3. Jean-Philippe Bouchaud & Marc Mezard, 2000. "Wealth condensation in a simple model of economy," Science & Finance (CFM) working paper archive 500026, Science & Finance, Capital Fund Management.
    4. Miguel A. Fuentes & Austin Gerig & Javier Vicente, 2009. "Universal Behavior of Extreme Price Movements in Stock Markets," Papers 0912.5448, arXiv.org.
    5. McDonald, James B. & Xu, Yexiao J., 1995. "A generalization of the beta distribution with applications," Journal of Econometrics, Elsevier, vol. 69(2), pages 427-428, October.
    6. A. Chatterjee & B. K. Chakrabarti, 2007. "Kinetic exchange models for income and wealth distributions," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 60(2), pages 135-149, November.
    7. Ma, Tao & Holden, John G. & Serota, R.A., 2013. "Distribution of wealth in a network model of the economy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2434-2441.
    8. Ma, Tao & Serota, R.A., 2014. "A model for stock returns and volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 89-115.
    9. James B. McDonald, 2008. "Some Generalized Functions for the Size Distribution of Income," Economic Studies in Inequality, Social Exclusion, and Well-Being, in: Duangkamon Chotikapanich (ed.), Modeling Income Distributions and Lorenz Curves, chapter 3, pages 37-55, Springer.
    10. M. Patriarca & E. Heinsalu & A. Chakraborti, 2010. "Basic kinetic wealth-exchange models: common features and open problems," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 73(1), pages 145-153, January.
    11. Eliazar, Iddo I. & Sokolov, Igor M., 2012. "Measuring statistical evenness: A panoramic overview," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1323-1353.
    12. Eliazar, Iddo I. & Sokolov, Igor M., 2010. "Measuring statistical heterogeneity: The Pietra index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(1), pages 117-125.
    13. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    14. Arnab Chatterjee & Bikas K. Chakrabarti, 2007. "Kinetic Exchange Models for Income and Wealth Distributions," Papers 0709.1543, arXiv.org, revised Nov 2007.
    15. Miguel A Fuentes & Austin Gerig & Javier Vicente, 2009. "Universal Behavior of Extreme Price Movements in Stock Markets," PLOS ONE, Public Library of Science, vol. 4(12), pages 1-4, December.
    16. Duangkamon Chotikapanich & William E. Griffiths & Gholamreza Hajargasht & Wasana Karunarathne & D. S. Prasada Rao, 2018. "Using the GB2 Income Distribution," Econometrics, MDPI, vol. 6(2), pages 1-24, April.
    17. Bouchaud, Jean-Philippe & Mézard, Marc, 2000. "Wealth condensation in a simple model of economy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 282(3), pages 536-545.
    18. M. Dashti Moghaddam & Jiong Liu & R. A. Serota, 2019. "Implied and Realized Volatility: A Study of Distributions and the Distribution of Difference," Papers 1906.02306, arXiv.org.
    19. Duangkamon Chotikapanich & William E. Griffiths & Gholamreza Hajargasht & Wasana Karunarathne & D.S. Prasada Rao, 2018. "Using the GB2 Income Distribution: A Review," Department of Economics - Working Papers Series 2036, The University of Melbourne.
    20. Els Heinsalu & Marco Patriarca, 2014. "Kinetic models of immediate exchange," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 87(8), pages 1-10, August.
    21. Sarabia, José María & Jordá, Vanesa, 2014. "Explicit expressions of the Pietra index for the generalized function for the size distribution of income," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 582-595.
    22. M. Dashti Moghaddam & R. A. Serota, 2018. "Combined Mutiplicative-Heston Model for Stochastic Volatility," Papers 1807.10793, arXiv.org.
    23. Louzoun, Yoram & Solomon, Sorin, 2001. "Volatility driven market in a generalized Lotka–Voltera formalism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 302(1), pages 220-233.
    24. Z. Liu & J. G. Holden & R. A. Serota, 2016. "Probability Density Of Response Times And Neurophysiology Of Cognition," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 19(04n05), pages 1-17, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Campolieti, Michele & Ramos, Arturo, 2021. "The distribution of strike size: Empirical evidence from Europe and North America in the 19th and 20th centuries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiong Liu & R. A. Serota, 2023. "Rethinking Generalized Beta family of distributions," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(2), pages 1-14, February.
    2. Jiong Liu & R. A. Serota, 2022. "Rethinking Generalized Beta Family of Distributions," Papers 2209.05225, arXiv.org.
    3. M. Dashti Moghaddam & Zhiyuan Liu & R. A. Serota, 2019. "Distributions of Historic Market Data -- Relaxation and Correlations," Papers 1907.05348, arXiv.org, revised Feb 2020.
    4. Dashti Moghaddam, M. & Serota, R.A., 2021. "Combined multiplicative–Heston model for stochastic volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    5. Max Greenberg & H. Oliver Gao, 2024. "Twenty-five years of random asset exchange modeling," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(6), pages 1-27, June.
    6. M. Dashti Moghaddam & Jiong Liu & R. A. Serota, 2021. "Implied and realized volatility: A study of distributions and the distribution of difference," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 2581-2594, April.
    7. Jordá, Vanesa & Niño-Zarazúa, Miguel, 2019. "Global inequality: How large is the effect of top incomes?," World Development, Elsevier, vol. 123(C), pages 1-1.
    8. Vanesa Jorda & José María Sarabia & Markus Jäntti, 2021. "Inequality measurement with grouped data: Parametric and non‐parametric methods," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(3), pages 964-984, July.
    9. M. Dashti Moghaddam & R. A. Serota, 2018. "Combined Mutiplicative-Heston Model for Stochastic Volatility," Papers 1807.10793, arXiv.org.
    10. M. Dashti Moghaddam & Zhiyuan Liu & R. A. Serota, 2018. "Distributions of Historic Market Data -- Implied and Realized Volatility," Papers 1804.05279, arXiv.org.
    11. Vladimir Hlasny, 2021. "Parametric representation of the top of income distributions: Options, historical evidence, and model selection," Journal of Economic Surveys, Wiley Blackwell, vol. 35(4), pages 1217-1256, September.
    12. Zhiyuan Liu & R. A. Serota, 2017. "On absence of steady state in the Bouchaud-M\'ezard network model," Papers 1704.02377, arXiv.org.
    13. Willis, Geoff, 2011. "Why money trickles up – wealth & income distributions," MPRA Paper 30851, University Library of Munich, Germany.
    14. Düring, Bertram & Matthes, Daniel & Toscani, Giuseppe, 2008. "A Boltzmann-type approach to the formation of wealth distribution curves," CoFE Discussion Papers 08/05, University of Konstanz, Center of Finance and Econometrics (CoFE).
    15. Rafael Wildauer & Stuart Leitch & Jakob Kapeller, 2021. "A European Wealth Tax for a Fair and Green Recovery," ICAE Working Papers 129, Johannes Kepler University, Institute for Comprehensive Analysis of the Economy.
    16. Jan Lorenz & Fabian Paetzel & Frank Schweitzer, 2012. "Redistribution spurs growth by using a portfolio effect on human capital," Papers 1210.3716, arXiv.org.
    17. M. Dashti Moghaddam & Zhiyuan Liu & R. A. Serota, 2019. "Distribution of Historic Market Data ¨C Implied and Realized Volatility," Applied Economics and Finance, Redfame publishing, vol. 6(5), pages 104-130, September.
    18. Sebastian Guala, 2009. "Taxes in a Wealth Distribution Model by Inelastically Scattering of Particles," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 7(1), pages 1-7.
    19. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: II. Agent-based models," Post-Print hal-00621059, HAL.
    20. Sarabia, José María & Jordá, Vanesa, 2014. "Explicit expressions of the Pietra index for the generalized function for the size distribution of income," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 582-595.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:559:y:2020:i:c:s0378437120305483. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.