IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v379y2007i1p168-178.html
   My bibliography  Save this article

Multiple time scales and the empirical models for stochastic volatility

Author

Listed:
  • Buchbinder, G.L.
  • Chistilin, K.M.

Abstract

The most common stochastic volatility models such as the Ornstein–Uhlenbeck (OU), the Heston, the exponential OU (ExpOU) and Hull–White models define volatility as a Markovian process. In this work we check the applicability of the Markovian approximation at separate times scales and will try to answer the question which of the stochastic volatility models indicated above is the most realistic. To this end we consider the volatility at both short (a few days) and long (a few months) time scales as a Markovian process and estimate for it the coefficients of the Kramers–Moyal expansion using the data for Dow-Jones Index. It has been found that the empirical data allow to take only the first two coefficients of expansion to be non-zero that define form of the volatility stochastic differential equation of Itô. It proved to be that for the long time scale the empirical data support the ExpOU model. At the short time scale the empirical model coincides with ExpOU model for the small volatility quantities only.

Suggested Citation

  • Buchbinder, G.L. & Chistilin, K.M., 2007. "Multiple time scales and the empirical models for stochastic volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(1), pages 168-178.
  • Handle: RePEc:eee:phsmap:v:379:y:2007:i:1:p:168-178
    DOI: 10.1016/j.physa.2006.12.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437106013665
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2006.12.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Remer, R. & Mahnke, R., 2004. "Application of Heston model and its solution to German DAX data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(1), pages 236-239.
    2. Adrian Dragulescu & Victor Yakovenko, 2002. "Probability distribution of returns in the Heston model with stochastic volatility," Quantitative Finance, Taylor & Francis Journals, vol. 2(6), pages 443-453.
    3. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," The Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-752.
    4. Yanhui Liu & Parameswaran Gopikrishnan & Pierre Cizeau & Martin Meyer & Chung-Kang Peng & H. Eugene Stanley, 1999. "The statistical properties of the volatility of price fluctuations," Papers cond-mat/9903369, arXiv.org, revised Mar 1999.
    5. Ralf Remer & Reinhard Mahnke, 2004. "Application of the heston and hull-white models to german dax data," Quantitative Finance, Taylor & Francis Journals, vol. 4(6), pages 685-693.
    6. Silva, A.Christian & Yakovenko, Victor M., 2003. "Comparison between the probability distribution of returns in the Heston model and empirical data for stock indexes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 303-310.
    7. Josep Perello & Jaume Masoliver & Jean-Philippe Bouchaud, 2004. "Multiple time scales in volatility and leverage correlations: a stochastic volatility model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 11(1), pages 27-50.
    8. Jaume Masoliver & Josep Perello, 2006. "Multiple time scales and the exponential Ornstein-Uhlenbeck stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 6(5), pages 423-433.
    9. Perelló, Josep & Masoliver, Jaume & Anento, Napoleón, 2004. "A comparison between several correlated stochastic volatility models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(1), pages 134-137.
    10. C. Renner & J. Peinke & R. Friedrich, 2001. "Markov properties of high frequency exchange rate data," Papers cond-mat/0102494, arXiv.org, revised Apr 2001.
    11. Xavier Gabaix & Parameswaran Gopikrishnan & Vasiliki Plerou & H. Eugene Stanley, 2006. "Institutional Investors and Stock Market Volatility," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 121(2), pages 461-504.
    12. Renner, Ch. & Peinke, J. & Friedrich, R., 2001. "Evidence of Markov properties of high frequency exchange rate data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 298(3), pages 499-520.
    13. Scott, Louis O., 1987. "Option Pricing when the Variance Changes Randomly: Theory, Estimation, and an Application," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(4), pages 419-438, December.
    14. Miccichè, Salvatore & Bonanno, Giovanni & Lillo, Fabrizio & Mantegna, Rosario N, 2002. "Volatility in financial markets: stochastic models and empirical results," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 314(1), pages 756-761.
    15. Pierre Cizeau & Yanhui Liu & Martin Meyer & C. -K. Peng & H. Eugene Stanley, 1997. "Volatility distribution in the S&P500 Stock Index," Papers cond-mat/9708143, arXiv.org.
    16. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    17. Cizeau, Pierre & Liu, Yanhui & Meyer, Martin & Peng, C.-K. & Eugene Stanley, H., 1997. "Volatility distribution in the S&P500 stock index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 245(3), pages 441-445.
    18. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    19. Xavier Gabaix & Parameswaran Gopikrishnan & Vasiliki Plerou & H. Eugene Stanley, 2003. "A theory of power-law distributions in financial market fluctuations," Nature, Nature, vol. 423(6937), pages 267-270, May.
    20. Jaume Masoliver & Josep Perelló, 2002. "A Correlated Stochastic Volatility Model Measuring Leverage And Other Stylized Facts," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 5(05), pages 541-562.
    21. Silva, A. Christian & Prange, Richard E. & Yakovenko, Victor M., 2004. "Exponential distribution of financial returns at mesoscopic time lags: a new stylized fact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(1), pages 227-235.
    22. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    23. Paul Wilmott & Asli Oztukel, 1998. "Uncertain Parameters, an Empirical Stochastic Volatility Model and Confidence Limits," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 1(01), pages 175-189.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cai, Mei-Ling & Chen, Zhang-HangJian & Li, Sai-Ping & Xiong, Xiong & Zhang, Wei & Yang, Ming-Yuan & Ren, Fei, 2022. "New volatility evolution model after extreme events," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    2. Mei-Ling Cai & Zhang-HangJian Chen & Sai-Ping Li & Xiong Xiong & Wei Zhang & Ming-Yuan Yang & Fei Ren, 2022. "New volatility evolution model after extreme events," Papers 2201.03213, arXiv.org.
    3. Calif, Rudy, 2012. "PDF models and synthetic model for the wind speed fluctuations based on the resolution of Langevin equation," Applied Energy, Elsevier, vol. 99(C), pages 173-182.
    4. Cyrille Dubarry & Randal Douc, 2014. "Calibrating the exponential Ornstein--Uhlenbeck multiscale stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 14(3), pages 443-456, March.
    5. Mitra, Sovan & Karathanasopoulos, Andreas & Sermpinis, Georgios & Dunis, Christian & Hood, John, 2015. "Operational risk: Emerging markets, sectors and measurement," European Journal of Operational Research, Elsevier, vol. 241(1), pages 122-132.
    6. Wei, Yu, 2012. "Forecasting volatility of fuel oil futures in China: GARCH-type, SV or realized volatility models?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5546-5556.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaume Masoliver & Josep Perello, 2006. "Multiple time scales and the exponential Ornstein-Uhlenbeck stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 6(5), pages 423-433.
    2. Subbotin, Alexandre, 2009. "Volatility Models: from Conditional Heteroscedasticity to Cascades at Multiple Horizons," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 15(3), pages 94-138.
    3. Miccichè, S., 2016. "Understanding the determinants of volatility clustering in terms of stationary Markovian processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 186-197.
    4. Alexander Subbotin & Thierry Chauveau & Kateryna Shapovalova, 2009. "Volatility Models: from GARCH to Multi-Horizon Cascades," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00390636, HAL.
    5. Bernardo Spagnolo & Davide Valenti, 2008. "Volatility Effects on the Escape Time in Financial Market Models," Papers 0810.1625, arXiv.org.
    6. Giacomo Bormetti & Valentina Cazzola & Danilo Delpini, 2009. "Option pricing under Ornstein-Uhlenbeck stochastic volatility: a linear model," Papers 0905.1882, arXiv.org, revised May 2010.
    7. Göncü, Ahmet & Karahan, Mehmet Oğuz & Kuzubaş, Tolga Umut, 2016. "A comparative goodness-of-fit analysis of distributions of some Lévy processes and Heston model to stock index returns," The North American Journal of Economics and Finance, Elsevier, vol. 36(C), pages 69-83.
    8. Mei-Ling Cai & Zhang-HangJian Chen & Sai-Ping Li & Xiong Xiong & Wei Zhang & Ming-Yuan Yang & Fei Ren, 2022. "New volatility evolution model after extreme events," Papers 2201.03213, arXiv.org.
    9. Cai, Mei-Ling & Chen, Zhang-HangJian & Li, Sai-Ping & Xiong, Xiong & Zhang, Wei & Yang, Ming-Yuan & Ren, Fei, 2022. "New volatility evolution model after extreme events," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    10. Kim, Kyungwon & Jung, Sean S., 2014. "Empirical analysis of structural change in Credit Default Swap volatility," Chaos, Solitons & Fractals, Elsevier, vol. 60(C), pages 56-67.
    11. Ralf Remer & Reinhard Mahnke, 2004. "Application of the heston and hull-white models to german dax data," Quantitative Finance, Taylor & Francis Journals, vol. 4(6), pages 685-693.
    12. Bara Kim & In-Suk Wee, 2014. "Pricing of geometric Asian options under Heston's stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 14(10), pages 1795-1809, October.
    13. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: I. Empirical facts," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 991-1012.
    14. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.
    15. Gilles Daniel & Nathan Joseph & David Bree, 2005. "Stochastic volatility and the goodness-of-fit of the Heston model," Quantitative Finance, Taylor & Francis Journals, vol. 5(2), pages 199-211.
    16. Andreas Behr & Ulrich Pötter, 2009. "Alternatives to the normal model of stock returns: Gaussian mixture, generalised logF and generalised hyperbolic models," Annals of Finance, Springer, vol. 5(1), pages 49-68, January.
    17. Dong, Yang & Wen, Shu-hui & Hu, Xiao-bing & Li, Jiang-Cheng, 2020. "Stochastic resonance of drawdown risk in energy market prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    18. Sosa-Correa, William O. & Ramos, Antônio M.T. & Vasconcelos, Giovani L., 2018. "Investigation of non-Gaussian effects in the Brazilian option market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 525-539.
    19. Nakamura, Tomomichi & Small, Michael, 2007. "Tests of the random walk hypothesis for financial data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(2), pages 599-615.
    20. De Domenico, Federica & Livan, Giacomo & Montagna, Guido & Nicrosini, Oreste, 2023. "Modeling and simulation of financial returns under non-Gaussian distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:379:y:2007:i:1:p:168-178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.