IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v4y2004i6p685-693.html
   My bibliography  Save this article

Application of the heston and hull-white models to german dax data

Author

Listed:
  • Ralf Remer
  • Reinhard Mahnke

Abstract

We focus on the stochastic description of stock price dynamics and concentrate on the Heston and Hull-White models. We derive the stationary probability density distribution of the variance of both models in the case of the zero correlation coefficient. These distributions are used to calculate solutions for the logarithmic returns of the stock price for short time lags. Furthermore, we compare the received results with numerical simulations. In addition, we apply the solutions of both models to tick-by-tick German Dax data. The data are from May 1996 to December 2001. We use the probability density distributions of the logarithmic returns calculated from the data and fit them to the theoretical distributions.

Suggested Citation

  • Ralf Remer & Reinhard Mahnke, 2004. "Application of the heston and hull-white models to german dax data," Quantitative Finance, Taylor & Francis Journals, vol. 4(6), pages 685-693.
  • Handle: RePEc:taf:quantf:v:4:y:2004:i:6:p:685-693
    DOI: 10.1080/14697680500040256
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/14697680500040256
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697680500040256?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Adrian Dragulescu & Victor Yakovenko, 2002. "Probability distribution of returns in the Heston model with stochastic volatility," Quantitative Finance, Taylor & Francis Journals, vol. 2(6), pages 443-453.
    2. M. F. M. Osborne, 1959. "Brownian Motion in the Stock Market," Operations Research, INFORMS, vol. 7(2), pages 145-173, April.
    3. Silva, A.Christian & Yakovenko, Victor M., 2003. "Comparison between the probability distribution of returns in the Heston model and empirical data for stock indexes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 303-310.
    4. Gopikrishnan, P. & Plerou, V. & Gabaix, X. & Amaral, L.A.N. & Stanley, H.E., 2001. "Price fluctuations and market activity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 137-143.
    5. R. F. Engle & A. J. Patton, 2001. "What good is a volatility model?," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 237-245.
    6. Parameswaran Gopikrishnan & Vasiliki Plerou & Xavier Gabaix & H. Eugene Stanley, 2000. "Statistical Properties of Share Volume Traded in Financial Markets," Papers cond-mat/0008113, arXiv.org.
    7. Miccichè, Salvatore & Bonanno, Giovanni & Lillo, Fabrizio & Mantegna, Rosario N, 2002. "Volatility in financial markets: stochastic models and empirical results," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 314(1), pages 756-761.
    8. V. Plerou & P. Gopikrishnan & X. Gabaix & L. A. N. Amaral & H. E. Stanley, 2001. "Price fluctuations, market activity and trading volume," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 262-269.
    9. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    10. Jean-Philippe Bouchaud & Andrew Matacz & Marc Potters, 2001. "The leverage effect in financial markets: retarded volatility and market panic," Science & Finance (CFM) working paper archive 0101120, Science & Finance, Capital Fund Management.
    11. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    12. Silva, A. Christian & Prange, Richard E. & Yakovenko, Victor M., 2004. "Exponential distribution of financial returns at mesoscopic time lags: a new stylized fact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(1), pages 227-235.
    13. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cai, Mei-Ling & Chen, Zhang-HangJian & Li, Sai-Ping & Xiong, Xiong & Zhang, Wei & Yang, Ming-Yuan & Ren, Fei, 2022. "New volatility evolution model after extreme events," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    2. Mei-Ling Cai & Zhang-HangJian Chen & Sai-Ping Li & Xiong Xiong & Wei Zhang & Ming-Yuan Yang & Fei Ren, 2022. "New volatility evolution model after extreme events," Papers 2201.03213, arXiv.org.
    3. Dong, Yang & Wen, Shu-hui & Hu, Xiao-bing & Li, Jiang-Cheng, 2020. "Stochastic resonance of drawdown risk in energy market prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    4. Andreas Behr & Ulrich Pötter, 2009. "Alternatives to the normal model of stock returns: Gaussian mixture, generalised logF and generalised hyperbolic models," Annals of Finance, Springer, vol. 5(1), pages 49-68, January.
    5. Nakamura, Tomomichi & Small, Michael, 2007. "Tests of the random walk hypothesis for financial data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(2), pages 599-615.
    6. Buchbinder, G.L. & Chistilin, K.M., 2007. "Multiple time scales and the empirical models for stochastic volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(1), pages 168-178.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaume Masoliver & Josep Perello, 2006. "Multiple time scales and the exponential Ornstein-Uhlenbeck stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 6(5), pages 423-433.
    2. Gilles Daniel & Nathan Joseph & David Bree, 2005. "Stochastic volatility and the goodness-of-fit of the Heston model," Quantitative Finance, Taylor & Francis Journals, vol. 5(2), pages 199-211.
    3. Bernardo Spagnolo & Davide Valenti, 2008. "Volatility Effects on the Escape Time in Financial Market Models," Papers 0810.1625, arXiv.org.
    4. Buchbinder, G.L. & Chistilin, K.M., 2007. "Multiple time scales and the empirical models for stochastic volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(1), pages 168-178.
    5. Göncü, Ahmet & Karahan, Mehmet Oğuz & Kuzubaş, Tolga Umut, 2016. "A comparative goodness-of-fit analysis of distributions of some Lévy processes and Heston model to stock index returns," The North American Journal of Economics and Finance, Elsevier, vol. 36(C), pages 69-83.
    6. Liu, Chang & Chang, Chuo, 2021. "Combination of transition probability distribution and stable Lorentz distribution in stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    7. Olkhov, Victor, 2020. "Volatility Depend on Market Trades and Macro Theory," MPRA Paper 102434, University Library of Munich, Germany.
    8. Giacomo Bormetti & Valentina Cazzola & Danilo Delpini, 2009. "Option pricing under Ornstein-Uhlenbeck stochastic volatility: a linear model," Papers 0905.1882, arXiv.org, revised May 2010.
    9. Rui Vilela Mendes & M. J. Oliveira, 2006. "A data-reconstructed fractional volatility model," Papers math/0602013, arXiv.org, revised Jun 2007.
    10. Sosa-Correa, William O. & Ramos, Antônio M.T. & Vasconcelos, Giovani L., 2018. "Investigation of non-Gaussian effects in the Brazilian option market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 525-539.
    11. Nils Bertschinger & Oliver Pfante, 2015. "Inferring Volatility in the Heston Model and its Relatives -- an Information Theoretical Approach," Papers 1512.08381, arXiv.org.
    12. Chuo Chang, 2020. "Dynamic correlations and distributions of stock returns on China's stock markets," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 10(1), pages 1-6.
    13. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: I. Empirical facts," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 991-1012.
    14. Miccichè, S., 2016. "Understanding the determinants of volatility clustering in terms of stationary Markovian processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 186-197.
    15. Eberlein, Ernst & Keller, Ulrich & Prause, Karsten, 1998. "New Insights into Smile, Mispricing, and Value at Risk: The Hyperbolic Model," The Journal of Business, University of Chicago Press, vol. 71(3), pages 371-405, July.
    16. Vipul Kumar Singh, 2013. "Effectiveness of volatility models in option pricing: evidence from recent financial upheavals," Journal of Advances in Management Research, Emerald Group Publishing Limited, vol. 10(3), pages 352-375, October.
    17. Kim, Kyungwon & Jung, Sean S., 2014. "Empirical analysis of structural change in Credit Default Swap volatility," Chaos, Solitons & Fractals, Elsevier, vol. 60(C), pages 56-67.
    18. Zhong, Guang-Yan & Li, Jiang-Cheng & Jiang, George J. & Li, Hai-Feng & Tao, Hui-Ming, 2018. "The time delay restraining the herd behavior with Bayesian approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 335-346.
    19. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: I. Empirical facts," Post-Print hal-00621058, HAL.
    20. Ballestra, Luca Vincenzo & Pacelli, Graziella & Zirilli, Francesco, 2007. "A numerical method to price exotic path-dependent options on an underlying described by the Heston stochastic volatility model," Journal of Banking & Finance, Elsevier, vol. 31(11), pages 3420-3437, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:4:y:2004:i:6:p:685-693. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.