IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1701.09043.html
   My bibliography  Save this paper

Towards a taxonomy of learning dynamics in 2 x 2 games

Author

Listed:
  • Marco Pangallo
  • James Sanders
  • Tobias Galla
  • Doyne Farmer

Abstract

Do boundedly rational players learn to choose equilibrium strategies as they play a game repeatedly? A large literature in behavioral game theory has proposed and experimentally tested various learning algorithms, but a comparative analysis of their equilibrium convergence properties is lacking. In this paper we analyze Experience-Weighted Attraction (EWA), which generalizes fictitious play, best-response dynamics, reinforcement learning and also replicator dynamics. Studying $2\times 2$ games for tractability, we recover some well-known results in the limiting cases in which EWA reduces to the learning rules that it generalizes, but also obtain new results for other parameterizations. For example, we show that in coordination games EWA may only converge to the Pareto-efficient equilibrium, never reaching the Pareto-inefficient one; that in Prisoner Dilemma games it may converge to fixed points of mutual cooperation; and that limit cycles or chaotic dynamics may be more likely with longer or shorter memory of previous play.

Suggested Citation

  • Marco Pangallo & James Sanders & Tobias Galla & Doyne Farmer, 2017. "Towards a taxonomy of learning dynamics in 2 x 2 games," Papers 1701.09043, arXiv.org, revised Sep 2021.
  • Handle: RePEc:arx:papers:1701.09043
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1701.09043
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. William A. Brock & Cars H. Hommes, 2001. "A Rational Route to Randomness," Chapters, in: W. D. Dechert (ed.), Growth Theory, Nonlinear Dynamics and Economic Modelling, chapter 16, pages 402-438, Edward Elgar Publishing.
    2. Benaïm, Michel & Hofbauer, Josef & Hopkins, Ed, 2009. "Learning in games with unstable equilibria," Journal of Economic Theory, Elsevier, vol. 144(4), pages 1694-1709, July.
    3. Borgers, Tilman & Sarin, Rajiv, 1997. "Learning Through Reinforcement and Replicator Dynamics," Journal of Economic Theory, Elsevier, vol. 77(1), pages 1-14, November.
    4. Martin J. Osborne & Ariel Rubinstein, 1994. "A Course in Game Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262650401, April.
    5. Milgrom, Paul & Roberts, John, 1991. "Adaptive and sophisticated learning in normal form games," Games and Economic Behavior, Elsevier, vol. 3(1), pages 82-100, February.
    6. Fudenberg Drew & Kreps David M., 1993. "Learning Mixed Equilibria," Games and Economic Behavior, Elsevier, vol. 5(3), pages 320-367, July.
    7. Arieli, Itai & Young, H. Peyton, 2016. "Stochastic learning dynamics and speed of convergence in population games," LSE Research Online Documents on Economics 68715, London School of Economics and Political Science, LSE Library.
    8. Fudenberg, Drew & Levine, David, 1998. "Learning in games," European Economic Review, Elsevier, vol. 42(3-5), pages 631-639, May.
    9. Erev, Ido & Roth, Alvin E, 1998. "Predicting How People Play Games: Reinforcement Learning in Experimental Games with Unique, Mixed Strategy Equilibria," American Economic Review, American Economic Association, vol. 88(4), pages 848-881, September.
    10. Crawford, Vincent P, 1974. "Learning the Optimal Strategy in a Zero-Sum Game," Econometrica, Econometric Society, vol. 42(5), pages 885-891, September.
    11. Ed Hopkins, 2002. "Two Competing Models of How People Learn in Games," Econometrica, Econometric Society, vol. 70(6), pages 2141-2166, November.
    12. McKelvey Richard D. & Palfrey Thomas R., 1995. "Quantal Response Equilibria for Normal Form Games," Games and Economic Behavior, Elsevier, vol. 10(1), pages 6-38, July.
    13. Mookherjee Dilip & Sopher Barry, 1994. "Learning Behavior in an Experimental Matching Pennies Game," Games and Economic Behavior, Elsevier, vol. 7(1), pages 62-91, July.
    14. Hahn, Sunku, 1999. "The convergence of fictitious play in 3 x 3 games with strategic complementarities," Economics Letters, Elsevier, vol. 64(1), pages 57-60, July.
    15. Itai Arieli & H. Peyton Young, 2016. "Stochastic Learning Dynamics and Speed of Convergence in Population Games," Econometrica, Econometric Society, vol. 84, pages 627-676, March.
    16. Colin Camerer & Teck-Hua Ho, 1999. "Experience-weighted Attraction Learning in Normal Form Games," Econometrica, Econometric Society, vol. 67(4), pages 827-874, July.
    17. Cars H. Hommes & Marius I. Ochea & Jan Tuinstra, 2018. "Evolutionary Competition Between Adjustment Processes in Cournot Oligopoly: Instability and Complex Dynamics," Dynamic Games and Applications, Springer, vol. 8(4), pages 822-843, December.
    18. Conlisk, John, 1993. "Adaptation in games : Two solutions to the Crawford puzzle," Journal of Economic Behavior & Organization, Elsevier, vol. 22(1), pages 25-50, September.
    19. Benaim, Michel & Hirsch, Morris W., 1999. "Mixed Equilibria and Dynamical Systems Arising from Fictitious Play in Perturbed Games," Games and Economic Behavior, Elsevier, vol. 29(1-2), pages 36-72, October.
    20. Drew Fudenberg & David K. Levine, 1998. "The Theory of Learning in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061945, April.
    21. Foster, Dean P. & Young, H. Peyton, 1998. "On the Nonconvergence of Fictitious Play in Coordination Games," Games and Economic Behavior, Elsevier, vol. 25(1), pages 79-96, October.
    22. Nagel, Rosemarie, 1995. "Unraveling in Guessing Games: An Experimental Study," American Economic Review, American Economic Association, vol. 85(5), pages 1313-1326, December.
    23. Bloomfield, Robert, 1994. "Learning a mixed strategy equilibrium in the laboratory," Journal of Economic Behavior & Organization, Elsevier, vol. 25(3), pages 411-436, December.
    24. Monderer, Dov & Sela, Aner, 1996. "A2 x 2Game without the Fictitious Play Property," Games and Economic Behavior, Elsevier, vol. 14(1), pages 144-148, May.
    25. Cheung, Yin-Wong & Friedman, Daniel, 1997. "Individual Learning in Normal Form Games: Some Laboratory Results," Games and Economic Behavior, Elsevier, vol. 19(1), pages 46-76, April.
    26. Nachbar, J H, 1990. ""Evolutionary" Selection Dynamics in Games: Convergence and Limit Properties," International Journal of Game Theory, Springer;Game Theory Society, vol. 19(1), pages 59-89.
    27. Young, H Peyton, 1993. "The Evolution of Conventions," Econometrica, Econometric Society, vol. 61(1), pages 57-84, January.
    28. Monderer, Dov & Shapley, Lloyd S., 1996. "Fictitious Play Property for Games with Identical Interests," Journal of Economic Theory, Elsevier, vol. 68(1), pages 258-265, January.
    29. Ho, Teck H. & Camerer, Colin F. & Chong, Juin-Kuan, 2007. "Self-tuning experience weighted attraction learning in games," Journal of Economic Theory, Elsevier, vol. 133(1), pages 177-198, March.
    30. Stahl, Dale II, 1988. "On the instability of mixed-strategy Nash equilibria," Journal of Economic Behavior & Organization, Elsevier, vol. 9(1), pages 59-69, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pangallo, Marco & Farmer, J. Doyne & Heinrich, Torsten, "undated". "Best reply structure and equilibrium convergence in generic games," INET Oxford Working Papers 2017-07, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford, revised Mar 2018.
    2. Robertson, Matthew J., 2018. "Contests with Ex-Ante Target Setting," CRETA Online Discussion Paper Series 47, Centre for Research in Economic Theory and its Applications CRETA.
    3. Jovcheska, Stefani, 2024. "Exploring corruption in higher education: A case study of brain drain in North Macedonia," International Journal of Educational Development, Elsevier, vol. 107(C).
    4. Torsten Heinrich & Yoojin Jang & Luca Mungo & Marco Pangallo & Alex Scott & Bassel Tarbush & Samuel Wiese, 2021. "Best-response dynamics, playing sequences, and convergence to equilibrium in random games," Papers 2101.04222, arXiv.org, revised Nov 2022.
    5. Lin, Zewei & Wang, Peng & Ren, Songyan & Zhao, Daiqing, 2023. "Economic and environmental impacts of EVs promotion under the 2060 carbon neutrality target—A CGE based study in Shaanxi Province of China," Applied Energy, Elsevier, vol. 332(C).
    6. Stefanos Leonardos & Georgios Piliouras & Kelly Spendlove, 2021. "Exploration-Exploitation in Multi-Agent Competition: Convergence with Bounded Rationality," Papers 2106.12928, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pangallo, Marco & Farmer, J. Doyne & Sanders, James & Galla, Tobias, 2017. "A taxonomy of learning dynamics in 2 × 2 games," INET Oxford Working Papers 2017-06, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
    2. Jakub Bielawski & Thiparat Chotibut & Fryderyk Falniowski & Michal Misiurewicz & Georgios Piliouras, 2022. "Unpredictable dynamics in congestion games: memory loss can prevent chaos," Papers 2201.10992, arXiv.org, revised Jan 2022.
    3. Benaïm, Michel & Hofbauer, Josef & Hopkins, Ed, 2009. "Learning in games with unstable equilibria," Journal of Economic Theory, Elsevier, vol. 144(4), pages 1694-1709, July.
    4. Chernov, G. & Susin, I., 2019. "Models of learning in games: An overview," Journal of the New Economic Association, New Economic Association, vol. 44(4), pages 77-125.
    5. Cason, Timothy N. & Friedman, Daniel & Hopkins, Ed, 2010. "Testing the TASP: An experimental investigation of learning in games with unstable equilibria," Journal of Economic Theory, Elsevier, vol. 145(6), pages 2309-2331, November.
    6. Hofbauer, Josef & Hopkins, Ed, 2005. "Learning in perturbed asymmetric games," Games and Economic Behavior, Elsevier, vol. 52(1), pages 133-152, July.
    7. Battalio,R. & Samuelson,L. & Huyck,J. van, 1998. "Risk dominance, payoff dominance and probabilistic choice learning," Working papers 2, Wisconsin Madison - Social Systems.
    8. Ianni, A., 2002. "Reinforcement learning and the power law of practice: some analytical results," Discussion Paper Series In Economics And Econometrics 203, Economics Division, School of Social Sciences, University of Southampton.
    9. Ed Hopkins, 2002. "Two Competing Models of How People Learn in Games," Econometrica, Econometric Society, vol. 70(6), pages 2141-2166, November.
    10. Jim Engle-Warnick & Ed Hopkins, 2006. "A Simple Test of Learning Theory," Levine's Bibliography 321307000000000724, UCLA Department of Economics.
    11. Jonathan Newton, 2018. "Evolutionary Game Theory: A Renaissance," Games, MDPI, vol. 9(2), pages 1-67, May.
    12. Mauersberger, Felix, 2019. "Thompson Sampling: Endogenously Random Behavior in Games and Markets," VfS Annual Conference 2019 (Leipzig): 30 Years after the Fall of the Berlin Wall - Democracy and Market Economy 203600, Verein für Socialpolitik / German Economic Association.
    13. Hofbauer,J. & Sandholm,W.H., 2001. "Evolution and learning in games with randomly disturbed payoffs," Working papers 5, Wisconsin Madison - Social Systems.
    14. Dridi, Slimane & Lehmann, Laurent, 2014. "On learning dynamics underlying the evolution of learning rules," Theoretical Population Biology, Elsevier, vol. 91(C), pages 20-36.
    15. Ulrich Berger, 2004. "Two More Classes of Games with the Fictitious Play Property," Game Theory and Information 0408003, University Library of Munich, Germany.
    16. Atanasios Mitropoulos, 2001. "Learning Under Little Information: An Experiment on Mutual Fate Control," Game Theory and Information 0110003, University Library of Munich, Germany.
    17. Mario Bravo & Mathieu Faure, 2013. "Reinforcement Learning with Restrictions on the Action Set," AMSE Working Papers 1335, Aix-Marseille School of Economics, France, revised 01 Jul 2013.
    18. Erhao Xie, 2019. "Monetary Payoff and Utility Function in Adaptive Learning Models," Staff Working Papers 19-50, Bank of Canada.
    19. DeJong, D.V. & Blume, A. & Neumann, G., 1998. "Learning in Sender-Receiver Games," Other publications TiSEM 4a8b4f46-f30b-4ad2-bb0c-1, Tilburg University, School of Economics and Management.
    20. Xie, Erhao, 2021. "Empirical properties and identification of adaptive learning models in behavioral game theory," Journal of Economic Behavior & Organization, Elsevier, vol. 191(C), pages 798-821.

    More about this item

    JEL classification:

    • C62 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Existence and Stability Conditions of Equilibrium
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1701.09043. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.