IDEAS home Printed from https://ideas.repec.org/p/zbw/vfsc19/203600.html
   My bibliography  Save this paper

Thompson Sampling: Endogenously Random Behavior in Games and Markets

Author

Listed:
  • Mauersberger, Felix

Abstract

Economists tend to assume that agents maximize their expected utility. However, many different experiments have questioned expected utility maximization by showing that human behavior can be characterized as random. This paper proposes Thompson Sampling as a theory of human behavior across very different situations of dynamic strategic interaction in economics. Thompson Sampling means that agents, having limited information about their environments, update their subjective belief distributions in a Bayesian way and subsequently make a random draw from the posterior. Conditional on that random draw, agents optimize. While Bayesian reasoning has often been shown to be at odds with agents' behavior even in simple environments, using data on experimental games, this paper shows that Bayesian sampling as in Thompson's proposal is a better description of agents' decision-making than commonly used theories of decision-making in economics such as Nash equilibrium, standard Bayesian learning and quantal response equilibrium (QRE) - above all in complex environments with many possible actions.

Suggested Citation

  • Mauersberger, Felix, 2019. "Thompson Sampling: Endogenously Random Behavior in Games and Markets," VfS Annual Conference 2019 (Leipzig): 30 Years after the Fall of the Berlin Wall - Democracy and Market Economy 203600, Verein für Socialpolitik / German Economic Association.
  • Handle: RePEc:zbw:vfsc19:203600
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/203600/1/VfS-2019-pid-27913.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Larbi Alaoui & Antonio Penta, 2016. "Endogenous Depth of Reasoning," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 83(4), pages 1297-1333.
    2. Fudenberg Drew & Kreps David M., 1993. "Learning Mixed Equilibria," Games and Economic Behavior, Elsevier, vol. 5(3), pages 320-367, July.
    3. Michael Woodford, 2019. "Monetary Policy Analysis When Planning Horizons Are Finite," NBER Macroeconomics Annual, University of Chicago Press, vol. 33(1), pages 1-50.
    4. Fudenberg, Drew & Levine, David, 1998. "Learning in games," European Economic Review, Elsevier, vol. 42(3-5), pages 631-639, May.
    5. Nagel, Rosemarie & Bühren, Christoph & Frank, Björn, 2017. "Inspired and inspiring: Hervé Moulin and the discovery of the beauty contest game," Mathematical Social Sciences, Elsevier, vol. 90(C), pages 191-207.
    6. Erev, Ido & Roth, Alvin E, 1998. "Predicting How People Play Games: Reinforcement Learning in Experimental Games with Unique, Mixed Strategy Equilibria," American Economic Review, American Economic Association, vol. 88(4), pages 848-881, September.
    7. Itzhak Gilboa & David Schmeidler, 1995. "Case-Based Decision Theory," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(3), pages 605-639.
    8. Martin Dufwenberg & Uri Gneezy & Jacob Goeree & Rosemarie Nagel, 2007. "Price floors and competition," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 33(1), pages 211-224, October.
    9. Elise Payzan-LeNestour & Peter Bossaerts, 2015. "Learning About Unstable, Publicly Unobservable Payoffs," The Review of Financial Studies, Society for Financial Studies, vol. 28(7), pages 1874-1913.
    10. Adam, Klaus & Marcet, Albert, 2011. "Internal rationality, imperfect market knowledge and asset prices," Journal of Economic Theory, Elsevier, vol. 146(3), pages 1224-1252, May.
    11. Walker, Joan & Ben-Akiva, Moshe, 2002. "Generalized random utility model," Mathematical Social Sciences, Elsevier, vol. 43(3), pages 303-343, July.
    12. Jacob K. Goeree & Thomas R. Palfrey & Brian W. Rogers & Richard D. McKelvey, 2007. "Self-Correcting Information Cascades," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 74(3), pages 733-762.
    13. Philip A. Haile & Ali Hortaçsu & Grigory Kosenok, 2008. "On the Empirical Content of Quantal Response Equilibrium," American Economic Review, American Economic Association, vol. 98(1), pages 180-200, March.
    14. Marimon, Ramon & Sunder, Shyam, 1994. "Expectations and Learning under Alternative Monetary Regimes: An Experimental Approach," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 4(1), pages 131-162, January.
    15. Rosemarie Nagel & Nicolaas J. Vriend, 1999. "An experimental study of adaptive behavior in an oligopolistic market game," Journal of Evolutionary Economics, Springer, vol. 9(1), pages 27-65.
    16. Ed Hopkins, 2002. "Two Competing Models of How People Learn in Games," Econometrica, Econometric Society, vol. 70(6), pages 2141-2166, November.
    17. Hommes,Cars, 2015. "Behavioral Rationality and Heterogeneous Expectations in Complex Economic Systems," Cambridge Books, Cambridge University Press, number 9781107564978, September.
    18. James Costain & Anton Nakov, 2019. "Logit Price Dynamics," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 51(1), pages 43-78, February.
    19. Clark, Todd & McCracken, Michael, 2013. "Advances in Forecast Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1107-1201, Elsevier.
    20. Colin Camerer & Teck-Hua Ho, 1999. "Experience-weighted Attraction Learning in Normal Form Games," Econometrica, Econometric Society, vol. 67(4), pages 827-874, July.
    21. David R Wozny & Ulrik R Beierholm & Ladan Shams, 2010. "Probability Matching as a Computational Strategy Used in Perception," PLOS Computational Biology, Public Library of Science, vol. 6(8), pages 1-7, August.
    22. William A. Brock & Cars H. Hommes, 1997. "A Rational Route to Randomness," Econometrica, Econometric Society, vol. 65(5), pages 1059-1096, September.
    23. Jacob K. Goeree & Charles A. Holt & Thomas R. Palfrey, 2016. "Quantal Response Equilibrium:A Stochastic Theory of Games," Economics Books, Princeton University Press, edition 1, number 10743.
    24. Othon M. Moreno & Yaroslav Rosokha, 2016. "Learning under compound risk vs. learning under ambiguity – an experiment," Journal of Risk and Uncertainty, Springer, vol. 53(2), pages 137-162, December.
    25. Drew Fudenberg & David K. Levine, 1998. "The Theory of Learning in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061945, April.
    26. Faruk Gul & Wolfgang Pesendorfer, 2006. "Random Expected Utility," Econometrica, Econometric Society, vol. 74(1), pages 121-146, January.
    27. Nagel, Rosemarie, 1995. "Unraveling in Guessing Games: An Experimental Study," American Economic Review, American Economic Association, vol. 85(5), pages 1313-1326, December.
    28. Stefano DellaVigna, 2018. "Structural Behavioral Economics," NBER Working Papers 24797, National Bureau of Economic Research, Inc.
    29. Stahl Dale O., 1993. "Evolution of Smartn Players," Games and Economic Behavior, Elsevier, vol. 5(4), pages 604-617, October.
    30. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387, September.
    31. Tamar Keasar & Ella Rashkovich & Dan Cohen & Avi Shmida, 2002. "Bees in two-armed bandit situations: foraging choices and possible decision mechanisms," Behavioral Ecology, International Society for Behavioral Ecology, vol. 13(6), pages 757-765, November.
    32. repec:bla:jecsur:v:14:y:2000:i:1:p:101-18 is not listed on IDEAS
    33. Mikhail Anufriev & Cars Hommes, 2012. "Evolutionary Selection of Individual Expectations and Aggregate Outcomes in Asset Pricing Experiments," American Economic Journal: Microeconomics, American Economic Association, vol. 4(4), pages 35-64, November.
    34. Ido Erev & Alvin Roth & Robert Slonim & Greg Barron, 2007. "Learning and equilibrium as useful approximations: Accuracy of prediction on randomly selected constant sum games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 33(1), pages 29-51, October.
    35. William A. Brock & Cars H. Hommes, 2001. "A Rational Route to Randomness," Chapters, in: W. D. Dechert (ed.), Growth Theory, Nonlinear Dynamics and Economic Modelling, chapter 16, pages 402-438, Edward Elgar Publishing.
    36. Denzil G. Fiebig & Michael P. Keane & Jordan Louviere & Nada Wasi, 2010. "The Generalized Multinomial Logit Model: Accounting for Scale and Coefficient Heterogeneity," Marketing Science, INFORMS, vol. 29(3), pages 393-421, 05-06.
    37. Erev, Ido & Roth, Alvin E. & Slonim, Robert L. & Barron, Greg, 2002. "Predictive value and the usefulness of game theoretic models," International Journal of Forecasting, Elsevier, vol. 18(3), pages 359-368.
    38. Breitmoser, Yves, 2012. "Strategic reasoning in p-beauty contests," Games and Economic Behavior, Elsevier, vol. 75(2), pages 555-569.
    39. Charles A. Holt & Jacob K. Goeree, 1999. "Stochastic Game Theory: For Playing Games, Not Just for Doing Theory," Virginia Economics Online Papers 306, University of Virginia, Department of Economics.
    40. Monica Brezzi & Tze Leung Lai, 2000. "Incomplete Learning from Endogenous Data in Dynamic Allocation," Econometrica, Econometric Society, vol. 68(6), pages 1511-1516, November.
    41. Goeree, Jacob K. & Holt, Charles A., 2005. "An experimental study of costly coordination," Games and Economic Behavior, Elsevier, vol. 51(2), pages 349-364, May.
    42. Cheung, Yin-Wong & Friedman, Daniel, 1997. "Individual Learning in Normal Form Games: Some Laboratory Results," Games and Economic Behavior, Elsevier, vol. 19(1), pages 46-76, April.
    43. Colin F. Camerer & Teck-Hua Ho & Juin-Kuan Chong, 2004. "A Cognitive Hierarchy Model of Games," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 119(3), pages 861-898.
    44. Jasmina Arifovic & John Ledyard, 2004. "Scaling Up Learning Models in Public Good Games," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 6(2), pages 203-238, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mauersberger, Felix & Nagel, Rosemarie & Bühren, Christoph, 2020. "Bounded rationality in Keynesian beauty contests: A lesson for central bankers?," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 14, pages 1-38.
    2. Pangallo, Marco & Sanders, James B.T. & Galla, Tobias & Farmer, J. Doyne, 2022. "Towards a taxonomy of learning dynamics in 2 × 2 games," Games and Economic Behavior, Elsevier, vol. 132(C), pages 1-21.
    3. Jehiel, Philippe & Singh, Juni, 2021. "Multi-state choices with aggregate feedback on unfamiliar alternatives," Games and Economic Behavior, Elsevier, vol. 130(C), pages 1-24.
    4. Chernov, G. & Susin, I., 2019. "Models of learning in games: An overview," Journal of the New Economic Association, New Economic Association, vol. 44(4), pages 77-125.
    5. Teck-Hua Ho & So-Eun Park & Xuanming Su, 2021. "A Bayesian Level- k Model in n -Person Games," Management Science, INFORMS, vol. 67(3), pages 1622-1638, March.
    6. Benaïm, Michel & Hofbauer, Josef & Hopkins, Ed, 2009. "Learning in games with unstable equilibria," Journal of Economic Theory, Elsevier, vol. 144(4), pages 1694-1709, July.
    7. Jacob K. Goeree & Charles A. Holt, 2001. "Ten Little Treasures of Game Theory and Ten Intuitive Contradictions," American Economic Review, American Economic Association, vol. 91(5), pages 1402-1422, December.
    8. Breitmoser, Yves, 2019. "Knowing me, imagining you: Projection and overbidding in auctions," Games and Economic Behavior, Elsevier, vol. 113(C), pages 423-447.
    9. Cason, Timothy N. & Friedman, Daniel & Hopkins, Ed, 2010. "Testing the TASP: An experimental investigation of learning in games with unstable equilibria," Journal of Economic Theory, Elsevier, vol. 145(6), pages 2309-2331, November.
    10. Hofbauer, Josef & Hopkins, Ed, 2005. "Learning in perturbed asymmetric games," Games and Economic Behavior, Elsevier, vol. 52(1), pages 133-152, July.
    11. Victor Aguirregabiria & Jihye Jeon, 2020. "Firms’ Beliefs and Learning: Models, Identification, and Empirical Evidence," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 56(2), pages 203-235, March.
    12. Ho, Teck H. & Camerer, Colin F. & Chong, Juin-Kuan, 2007. "Self-tuning experience weighted attraction learning in games," Journal of Economic Theory, Elsevier, vol. 133(1), pages 177-198, March.
    13. Hanaki, Nobuyuki & Ishikawa, Ryuichiro & Akiyama, Eizo, 2009. "Learning games," Journal of Economic Dynamics and Control, Elsevier, vol. 33(10), pages 1739-1756, October.
    14. Breitmoser, Yves, 2017. "Knowing Me, Imagining You:," Rationality and Competition Discussion Paper Series 36, CRC TRR 190 Rationality and Competition.
    15. Hommes, Cars, 2018. "Behavioral & experimental macroeconomics and policy analysis: a complex systems approach," Working Paper Series 2201, European Central Bank.
    16. Daniel Serra, 2021. "Decision-making: from neuroscience to neuroeconomics—an overview," Theory and Decision, Springer, vol. 91(1), pages 1-80, July.
    17. Duffy, John, 2006. "Agent-Based Models and Human Subject Experiments," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 19, pages 949-1011, Elsevier.
    18. Anufriev, Mikhail & Duffy, John & Panchenko, Valentyn, 2022. "Learning in two-dimensional beauty contest games: Theory and experimental evidence," Journal of Economic Theory, Elsevier, vol. 201(C).
    19. W Chen & Y Chen & D Levine, 2015. "A Unifying Learning Framework for Building Artificial Game-Playing Agents," Levine's Working Paper Archive 786969000000001002, David K. Levine.
    20. Ianni, A., 2002. "Reinforcement learning and the power law of practice: some analytical results," Discussion Paper Series In Economics And Econometrics 203, Economics Division, School of Social Sciences, University of Southampton.

    More about this item

    Keywords

    Learning; adaptive learning; Bayesian learning; behavioral game theory; expectations;
    All these keywords.

    JEL classification:

    • C91 - Mathematical and Quantitative Methods - - Design of Experiments - - - Laboratory, Individual Behavior
    • C92 - Mathematical and Quantitative Methods - - Design of Experiments - - - Laboratory, Group Behavior
    • D84 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Expectations; Speculations
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:vfsc19:203600. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/vfsocea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.