IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1409.2023.html
   My bibliography  Save this paper

Optimal investment with bounded above utilities in discrete time markets

Author

Listed:
  • Miklos Rasonyi

Abstract

We consider an arbitrage-free, discrete time and frictionless market. We prove that an investor maximising the expected utility of her terminal wealth can always find an optimal investment strategy provided that her dissatisfaction of infinite losses is infinite and her utility function is non-decreasing, continuous and bounded above. The same result is shown for cumulative prospect theory preferences, under additional assumptions.

Suggested Citation

  • Miklos Rasonyi, 2014. "Optimal investment with bounded above utilities in discrete time markets," Papers 1409.2023, arXiv.org.
  • Handle: RePEc:arx:papers:1409.2023
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1409.2023
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Miklós Rásonyi & Andrea Rodrigues, 2013. "Optimal portfolio choice for a behavioural investor in continuous-time markets," Annals of Finance, Springer, vol. 9(2), pages 291-318, May.
    2. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    3. Teemu Pennanen, 2014. "Optimal investment and contingent claim valuation in illiquid markets," Finance and Stochastics, Springer, vol. 18(4), pages 733-754, October.
    4. Arjan B. Berkelaar & Roy Kouwenberg & Thierry Post, 2004. "Optimal Portfolio Choice under Loss Aversion," The Review of Economics and Statistics, MIT Press, vol. 86(4), pages 973-987, November.
    5. Hanqing Jin & Xun Yu Zhou, 2008. "Behavioral Portfolio Selection In Continuous Time," Mathematical Finance, Wiley Blackwell, vol. 18(3), pages 385-426, July.
    6. Laurence Carassus & Miklos Rasonyi, 2013. "Maximization of Non-Concave Utility Functions in Discrete-Time Financial Market Models," Papers 1302.0134, arXiv.org, revised Sep 2014.
    7. Xue Dong He & Xun Yu Zhou, 2011. "Portfolio Choice Under Cumulative Prospect Theory: An Analytical Treatment," Management Science, INFORMS, vol. 57(2), pages 315-331, February.
    8. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    9. repec:dau:papers:123456789/2317 is not listed on IDEAS
    10. Miklos Rasonyi & Andrea M. Rodrigues, 2012. "Optimal Portfolio Choice for a Behavioural Investor in Continuous-Time Markets," Papers 1202.0628, arXiv.org, revised Apr 2013.
    11. Bernard, Carole & Ghossoub, Mario, 2009. "Static Portfolio Choice under Cumulative Prospect Theory," MPRA Paper 15446, University Library of Munich, Germany.
    12. Roman Muraviev & L. Rogers, 2013. "Utilities bounded below," Annals of Finance, Springer, vol. 9(2), pages 271-289, May.
    13. Terence M. Ryan, 1974. "The Use of Unbounded Utility Functions in Expected-Utility Maximization: Comment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 88(1), pages 133-135.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huy N. Chau & Mikl'os R'asonyi, 2016. "Skorohod's representation theorem and optimal strategies for markets with frictions," Papers 1606.07311, arXiv.org, revised Apr 2017.
    2. Mikl'os R'asonyi & Andrea Meireles Rodrigues, 2013. "Continuous-Time Portfolio Optimisation for a Behavioural Investor with Bounded Utility on Gains," Papers 1309.0362, arXiv.org, revised Mar 2014.
    3. Jakusch, Sven Thorsten & Meyer, Steffen & Hackethal, Andreas, 2019. "Taming models of prospect theory in the wild? Estimation of Vlcek and Hens (2011)," SAFE Working Paper Series 146, Leibniz Institute for Financial Research SAFE, revised 2019.
    4. De Giorgi, Enrico G. & Legg, Shane, 2012. "Dynamic portfolio choice and asset pricing with narrow framing and probability weighting," Journal of Economic Dynamics and Control, Elsevier, vol. 36(7), pages 951-972.
    5. Laurence Carassus & Miklós Rásonyi, 2016. "Maximization of Nonconcave Utility Functions in Discrete-Time Financial Market Models," Mathematics of Operations Research, INFORMS, vol. 41(1), pages 146-173, February.
    6. Miklós Rásonyi & Andrea Rodrigues, 2013. "Optimal portfolio choice for a behavioural investor in continuous-time markets," Annals of Finance, Springer, vol. 9(2), pages 291-318, May.
    7. Mikl'os R'asonyi & Jos'e Gregorio Rodr'iguez-Villarreal, 2015. "Optimal investment under behavioural criteria in incomplete diffusion market models," Papers 1501.01504, arXiv.org.
    8. Bin Zou, 2017. "Optimal Investment In Hedge Funds Under Loss Aversion," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(03), pages 1-32, May.
    9. Marcos Escobar-Anel & Michel Kschonnek & Rudi Zagst, 2022. "Portfolio optimization: not necessarily concave utility and constraints on wealth and allocation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(1), pages 101-140, February.
    10. Wang, Suxin & Rong, Ximin & Zhao, Hui, 2019. "Optimal investment and benefit payment strategy under loss aversion for target benefit pension plans," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 205-218.
    11. Jaroslava Hlouskova & Jana Mikocziova & Rudolf Sivak & Peter Tsigaris, 2014. "Capital Income Taxation and Risk-Taking under Prospect Theory: The Continuous Distribution Case," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 64(5), pages 374-391, November.
    12. Yun Shi & Xiangyu Cui & Jing Yao & Duan Li, 2015. "Dynamic Trading with Reference Point Adaptation and Loss Aversion," Operations Research, INFORMS, vol. 63(4), pages 789-806, August.
    13. Jaroslava Hlouskova & Panagiotis Tsigaris, 2012. "Capital income taxation and risk taking under prospect theory," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 19(4), pages 554-573, August.
    14. Armstrong, John & Brigo, Damiano, 2019. "Risk managing tail-risk seekers: VaR and expected shortfall vs S-shaped utility," Journal of Banking & Finance, Elsevier, vol. 101(C), pages 122-135.
    15. Bin Zou & Rudi Zagst, 2015. "Optimal Investment with Transaction Costs under Cumulative Prospect Theory in Discrete Time," Papers 1511.04768, arXiv.org, revised Nov 2016.
    16. Miklos Rasonyi & Andrea M. Rodrigues, 2012. "Optimal Portfolio Choice for a Behavioural Investor in Continuous-Time Markets," Papers 1202.0628, arXiv.org, revised Apr 2013.
    17. Alain Bensoussan & Abel Cadenillas & Hyeng Keun Koo, 2015. "Entrepreneurial Decisions on Effort and Project with a Nonconcave Objective Function," Mathematics of Operations Research, INFORMS, vol. 40(4), pages 902-914, October.
    18. Curatola, Giuliano, 2017. "Optimal portfolio choice with loss aversion over consumption," The Quarterly Review of Economics and Finance, Elsevier, vol. 66(C), pages 345-358.
    19. Gao, Jianjun & Li, Duan & Xie, Jinyan & Yang, Yiwen & Yao, Jing, 2024. "When Prospect Theory Meets Mean-Reverting Asset Returns: A Behavioral Dynamic Trading Model," Journal of Banking & Finance, Elsevier, vol. 162(C).
    20. Bi, Xiuchun & Cui, Zhenyu & Fan, Jiacheng & Yuan, Lvning & Zhang, Shuguang, 2023. "Optimal investment problem under behavioral setting: A Lagrange duality perspective," Journal of Economic Dynamics and Control, Elsevier, vol. 156(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1409.2023. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.