IDEAS home Printed from https://ideas.repec.org/a/eee/dyncon/v156y2023ics0165188923001574.html
   My bibliography  Save this article

Optimal investment problem under behavioral setting: A Lagrange duality perspective

Author

Listed:
  • Bi, Xiuchun
  • Cui, Zhenyu
  • Fan, Jiacheng
  • Yuan, Lvning
  • Zhang, Shuguang

Abstract

In this paper, we consider the optimal investment problem with both probability distortion/weighting and general non-concave utility functions with possibly finite number of inflection points, and apply a Lagrange duality based relaxation approach for solving this problem. Existing literature has shown the equivalent relationships (strong duality) between the relaxed problem and the original one by either assuming the presence of probability weighting or the non-concavity of utility functions, but not both. In this paper, combining both factors, we prove that the absence of concavity in the utilities may result in strictly positive gaps, thus the strong duality may not hold unconditionally. The necessary and sufficient conditions on eliminating such gaps have been provided under this circumstance. We have applied the solution method to obtain closed-form solutions for the optimal terminal wealth and corresponding investment strategies in a special cumulative prospect theory (CPT) example with an appropriately selected inverse S-shaped probability distortion function. Based on the solutions, the joint effects of non-concave utilities combined with the probability weighting on the trading behaviors can be explicitly characterized. We show that, under this particular example, the co-existence of both factors may water down the loss aversion effect induced by only S-shaped utility or probability distortion when the agents are more cash-strapped in the initial budgets. In addition, we find that the optimal strategies derived from distorted beliefs shall converge to a constant that can be expressed by the standard Merton ratio multiplied by an inflation factor which we name as “distorted” Merton ratio. More importantly, the inflation factor is solely dependent on the probability distortion rather than the features of the utility function.

Suggested Citation

  • Bi, Xiuchun & Cui, Zhenyu & Fan, Jiacheng & Yuan, Lvning & Zhang, Shuguang, 2023. "Optimal investment problem under behavioral setting: A Lagrange duality perspective," Journal of Economic Dynamics and Control, Elsevier, vol. 156(C).
  • Handle: RePEc:eee:dyncon:v:156:y:2023:i:c:s0165188923001574
    DOI: 10.1016/j.jedc.2023.104751
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165188923001574
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jedc.2023.104751?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zuo Quan Xu, 2016. "A Note On The Quantile Formulation," Mathematical Finance, Wiley Blackwell, vol. 26(3), pages 589-601, July.
    2. van Bilsen, Servaas & Laeven, Roger J.A., 2020. "Dynamic consumption and portfolio choice under prospect theory," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 224-237.
    3. Bi, Junna & Jin, Hanqing & Meng, Qingbin, 2018. "Behavioral mean-variance portfolio selection," European Journal of Operational Research, Elsevier, vol. 271(2), pages 644-663.
    4. Yaari, Menahem E, 1987. "The Dual Theory of Choice under Risk," Econometrica, Econometric Society, vol. 55(1), pages 95-115, January.
    5. Jennifer N. Carpenter, 2000. "Does Option Compensation Increase Managerial Risk Appetite?," Journal of Finance, American Finance Association, vol. 55(5), pages 2311-2331, October.
    6. Chen, An & Hieber, Peter & Nguyen, Thai, 2019. "Constrained non-concave utility maximization: An application to life insurance contracts with guarantees," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1119-1135.
    7. L. Rüschendorf & Steven Vanduffel, 2020. "On the construction of optimal payoffs," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(1), pages 129-153, June.
    8. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    9. Arjan B. Berkelaar & Roy Kouwenberg & Thierry Post, 2004. "Optimal Portfolio Choice under Loss Aversion," The Review of Economics and Statistics, MIT Press, vol. 86(4), pages 973-987, November.
    10. Nicholas Barberis & Ming Huang, 2008. "Stocks as Lotteries: The Implications of Probability Weighting for Security Prices," American Economic Review, American Economic Association, vol. 98(5), pages 2066-2100, December.
    11. Pengyu Wei, 2018. "Risk management with weighted VaR," Mathematical Finance, Wiley Blackwell, vol. 28(4), pages 1020-1060, October.
    12. Quiggin, John, 1982. "A theory of anticipated utility," Journal of Economic Behavior & Organization, Elsevier, vol. 3(4), pages 323-343, December.
    13. Hanqing Jin & Xun Yu Zhou, 2008. "Behavioral Portfolio Selection In Continuous Time," Mathematical Finance, Wiley Blackwell, vol. 18(3), pages 385-426, July.
    14. Basak, Suleyman & Shapiro, Alexander, 2001. "Value-at-Risk-Based Risk Management: Optimal Policies and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 14(2), pages 371-405.
    15. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    16. Xue Dong He & Xun Yu Zhou, 2016. "Hope, Fear, And Aspirations," Mathematical Finance, Wiley Blackwell, vol. 26(1), pages 3-50, January.
    17. Min Dai & Steven Kou & Shuaijie Qian & Xiangwei Wan, 2022. "Nonconcave Utility Maximization with Portfolio Bounds," Management Science, INFORMS, vol. 68(11), pages 8368-8385, November.
    18. Enrico Diecidue & Jeroen van de Ven, 2008. "Aspiration Level, Probability Of Success And Failure, And Expected Utility," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 49(2), pages 683-700, May.
    19. Xue Dong He & Xun Yu Zhou, 2011. "Portfolio Choice Under Cumulative Prospect Theory: An Analytical Treatment," Management Science, INFORMS, vol. 57(2), pages 315-331, February.
    20. Alain Bensoussan & Abel Cadenillas & Hyeng Keun Koo, 2015. "Entrepreneurial Decisions on Effort and Project with a Nonconcave Objective Function," Mathematics of Operations Research, INFORMS, vol. 40(4), pages 902-914, October.
    21. Sid Browne, 2000. "Risk-Constrained Dynamic Active Portfolio Management," Management Science, INFORMS, vol. 46(9), pages 1188-1199, September.
    22. Xue Dong He & Steven Kou, 2018. "Profit Sharing In Hedge Funds," Mathematical Finance, Wiley Blackwell, vol. 28(1), pages 50-81, January.
    23. Armstrong, John & Brigo, Damiano, 2019. "Risk managing tail-risk seekers: VaR and expected shortfall vs S-shaped utility," Journal of Banking & Finance, Elsevier, vol. 101(C), pages 122-135.
    24. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    25. Maxim Bichuch & Stephan Sturm, 2014. "Portfolio optimization under convex incentive schemes," Finance and Stochastics, Springer, vol. 18(4), pages 873-915, October.
    26. Enrico Diecidue & Jeroen Van De Ven, 2008. "Aspiration Level, Probability Of Success And Failure, And Expected Utility," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 49(2), pages 683-700, May.
    27. Valery Polkovnichenko, 2005. "Household Portfolio Diversification: A Case for Rank-Dependent Preferences," The Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1467-1502.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fangyuan Zhang, 2023. "Non-concave portfolio optimization with average value-at-risk," Mathematics and Financial Economics, Springer, volume 17, number 3, March.
    2. Zongxia Liang & Yang Liu & Litian Zhang, 2021. "A Framework of State-dependent Utility Optimization with General Benchmarks," Papers 2101.06675, arXiv.org, revised Dec 2023.
    3. Jakusch, Sven Thorsten & Meyer, Steffen & Hackethal, Andreas, 2019. "Taming models of prospect theory in the wild? Estimation of Vlcek and Hens (2011)," SAFE Working Paper Series 146, Leibniz Institute for Financial Research SAFE, revised 2019.
    4. Servaas van Bilsen & Roger J. A. Laeven & Theo E. Nijman, 2020. "Consumption and Portfolio Choice Under Loss Aversion and Endogenous Updating of the Reference Level," Management Science, INFORMS, vol. 66(9), pages 3927-3955, September.
    5. De Giorgi, Enrico G. & Legg, Shane, 2012. "Dynamic portfolio choice and asset pricing with narrow framing and probability weighting," Journal of Economic Dynamics and Control, Elsevier, vol. 36(7), pages 951-972.
    6. Xue Dong He & Zhaoli Jiang & Steven Kou, 2020. "Portfolio Selection under Median and Quantile Maximization," Papers 2008.10257, arXiv.org, revised Mar 2021.
    7. Dong, Yinghui & Zheng, Harry, 2020. "Optimal investment with S-shaped utility and trading and Value at Risk constraints: An application to defined contribution pension plan," European Journal of Operational Research, Elsevier, vol. 281(2), pages 341-356.
    8. Dong, Yinghui & Zheng, Harry, 2019. "Optimal investment of DC pension plan under short-selling constraints and portfolio insurance," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 47-59.
    9. Jakusch, Sven Thorsten, 2017. "On the applicability of maximum likelihood methods: From experimental to financial data," SAFE Working Paper Series 148, Leibniz Institute for Financial Research SAFE, revised 2017.
    10. Stephen G Dimmock & Roy Kouwenberg & Olivia S Mitchell & Kim Peijnenburg, 2021. "Household Portfolio Underdiversification and Probability Weighting: Evidence from the Field," The Review of Financial Studies, Society for Financial Studies, vol. 34(9), pages 4524-4563.
    11. Huy N. Chau & Mikl'os R'asonyi, 2016. "Skorohod's representation theorem and optimal strategies for markets with frictions," Papers 1606.07311, arXiv.org, revised Apr 2017.
    12. Bin Zou & Rudi Zagst, 2015. "Optimal Investment with Transaction Costs under Cumulative Prospect Theory in Discrete Time," Papers 1511.04768, arXiv.org, revised Nov 2016.
    13. Mi, Hui & Xu, Zuo Quan, 2023. "Optimal portfolio selection with VaR and portfolio insurance constraints under rank-dependent expected utility theory," Insurance: Mathematics and Economics, Elsevier, vol. 110(C), pages 82-105.
    14. van Bilsen, Servaas & Laeven, Roger J.A., 2020. "Dynamic consumption and portfolio choice under prospect theory," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 224-237.
    15. Curatola, Giuliano, 2017. "Optimal portfolio choice with loss aversion over consumption," The Quarterly Review of Economics and Finance, Elsevier, vol. 66(C), pages 345-358.
    16. Xue Dong He & Moris S. Strub & Thaleia Zariphopoulou, 2019. "Forward Rank-Dependent Performance Criteria: Time-Consistent Investment Under Probability Distortion," Papers 1904.01745, arXiv.org.
    17. Min Dai & Steven Kou & Shuaijie Qian & Xiangwei Wan, 2022. "Nonconcave Utility Maximization with Portfolio Bounds," Management Science, INFORMS, vol. 68(11), pages 8368-8385, November.
    18. Jing Peng & Pengyu Wei & Zuo Quan Xu, 2022. "Relative growth rate optimization under behavioral criterion," Papers 2211.05402, arXiv.org.
    19. John Armstrong & Damiano Brigo & Alex S. L. Tse, 2020. "The importance of dynamic risk constraints for limited liability operators," Papers 2011.03314, arXiv.org.
    20. Zuo Quan Xu, 2021. "Moral-hazard-free insurance: mean-variance premium principle and rank-dependent utility theory," Papers 2108.06940, arXiv.org, revised Aug 2022.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:156:y:2023:i:c:s0165188923001574. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jedc .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.