IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v346y2019icp205-218.html
   My bibliography  Save this article

Optimal investment and benefit payment strategy under loss aversion for target benefit pension plans

Author

Listed:
  • Wang, Suxin
  • Rong, Ximin
  • Zhao, Hui

Abstract

In this paper, we consider the optimal investment and benefit payment strategy for a target benefit plan (TBP), where the plan members are loss averse with an S-shaped utility over benefit relative to a time-varying target benefit level. The pension payments are dependent on the financial situation of the plan, with risk sharing between different generations. The pension fund is invested in both a risk-free asset and multiple risky assets. Using the martingale method, we derive the optimal investment strategy and optimal benefit payment policy, explicitly, which minimizes the interim utility of the benefit risk in terms of deviating from the benefit target. Finally, some numerical examples and sensitivity analyses are provided to show the effects of market parameters on the optimal strategies. We also compare the optimal benefit payment policy for loss-averse participants with that of constant relative risk averse (CRRA) participants by numerical results. We find that the TBP model for loss-averse participants is effective in providing a stable and sustainable pension account for participants.

Suggested Citation

  • Wang, Suxin & Rong, Ximin & Zhao, Hui, 2019. "Optimal investment and benefit payment strategy under loss aversion for target benefit pension plans," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 205-218.
  • Handle: RePEc:eee:apmaco:v:346:y:2019:i:c:p:205-218
    DOI: 10.1016/j.amc.2018.10.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318308968
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.10.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song, Jingjing & Bi, Xiuchun & Li, Rong & Zhang, Shuguang, 2017. "Optimal consumption and portfolio selection problems under loss aversion with downside consumption constraints," Applied Mathematics and Computation, Elsevier, vol. 299(C), pages 80-94.
    2. Coen Teulings & Casper Vries, 2006. "Generational Accounting, Solidarity and Pension Losses," De Economist, Springer, vol. 154(1), pages 63-83, March.
    3. Guan, Guohui & Liang, Zongxia, 2016. "Optimal management of DC pension plan under loss aversion and Value-at-Risk constraints," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 224-237.
    4. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    5. Chen, Zheng & Li, Zhongfei & Zeng, Yan & Sun, Jingyun, 2017. "Asset allocation under loss aversion and minimum performance constraint in a DC pension plan with inflation risk," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 137-150.
    6. Amos Tversky & Daniel Kahneman, 1991. "Loss Aversion in Riskless Choice: A Reference-Dependent Model," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 106(4), pages 1039-1061.
    7. Arjan B. Berkelaar & Roy Kouwenberg & Thierry Post, 2004. "Optimal Portfolio Choice under Loss Aversion," The Review of Economics and Statistics, MIT Press, vol. 86(4), pages 973-987, November.
    8. Ed Westerhout, 2011. "Intergenerational Risk Sharing in Time-Consistent Funded Pension Schemes," CPB Discussion Paper 176, CPB Netherlands Bureau for Economic Policy Analysis.
    9. Gollier, Christian, 2008. "Intergenerational risk-sharing and risk-taking of a pension fund," Journal of Public Economics, Elsevier, vol. 92(5-6), pages 1463-1485, June.
    10. Cui, Jiajia & Jong, Frank De & Ponds, Eduard, 2011. "Intergenerational risk sharing within funded pension schemes," Journal of Pension Economics and Finance, Cambridge University Press, vol. 10(1), pages 1-29, January.
    11. Wang, Suxin & Lu, Yi & Sanders, Barbara, 2018. "Optimal investment strategies and intergenerational risk sharing for target benefit pension plans," Insurance: Mathematics and Economics, Elsevier, vol. 80(C), pages 1-14.
    12. Hanqing Jin & Xun Yu Zhou, 2008. "Behavioral Portfolio Selection In Continuous Time," Mathematical Finance, Wiley Blackwell, vol. 18(3), pages 385-426, July.
    13. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    14. Xue Dong He & Xun Yu Zhou, 2011. "Portfolio Choice Under Cumulative Prospect Theory: An Analytical Treatment," Management Science, INFORMS, vol. 57(2), pages 315-331, February.
    15. Blake, David & Wright, Douglas & Zhang, Yumeng, 2013. "Target-driven investing: Optimal investment strategies in defined contribution pension plans under loss aversion," Journal of Economic Dynamics and Control, Elsevier, vol. 37(1), pages 195-209.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Bing & Meng, Hui & Zhou, Ming, 2021. "Optimal investment and reinsurance policies for an insurer with ambiguity aversion," The North American Journal of Economics and Finance, Elsevier, vol. 55(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Yinghui & Zheng, Harry, 2019. "Optimal investment of DC pension plan under short-selling constraints and portfolio insurance," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 47-59.
    2. Guohui Guan & Zongxia Liang & Yi Xia, 2023. "Optimal management of DB pension fund under both underfunded and overfunded cases," Papers 2302.08731, arXiv.org.
    3. Dong, Yinghui & Zheng, Harry, 2020. "Optimal investment with S-shaped utility and trading and Value at Risk constraints: An application to defined contribution pension plan," European Journal of Operational Research, Elsevier, vol. 281(2), pages 341-356.
    4. Curatola, Giuliano, 2017. "Optimal portfolio choice with loss aversion over consumption," The Quarterly Review of Economics and Finance, Elsevier, vol. 66(C), pages 345-358.
    5. Chen, Zheng & Li, Zhongfei & Zeng, Yan, 2023. "Portfolio choice with illiquid asset for a loss-averse pension fund investor," Insurance: Mathematics and Economics, Elsevier, vol. 108(C), pages 60-83.
    6. Jakusch, Sven Thorsten & Meyer, Steffen & Hackethal, Andreas, 2019. "Taming models of prospect theory in the wild? Estimation of Vlcek and Hens (2011)," SAFE Working Paper Series 146, Leibniz Institute for Financial Research SAFE, revised 2019.
    7. Curatola, Giuliano, 2016. "Optimal consumption and portfolio choice with loss aversion," SAFE Working Paper Series 130, Leibniz Institute for Financial Research SAFE.
    8. Armstrong, John & Brigo, Damiano, 2019. "Risk managing tail-risk seekers: VaR and expected shortfall vs S-shaped utility," Journal of Banking & Finance, Elsevier, vol. 101(C), pages 122-135.
    9. De Giorgi, Enrico G. & Legg, Shane, 2012. "Dynamic portfolio choice and asset pricing with narrow framing and probability weighting," Journal of Economic Dynamics and Control, Elsevier, vol. 36(7), pages 951-972.
    10. Huy N. Chau & Mikl'os R'asonyi, 2016. "Skorohod's representation theorem and optimal strategies for markets with frictions," Papers 1606.07311, arXiv.org, revised Apr 2017.
    11. Laurence Carassus & Miklós Rásonyi, 2016. "Maximization of Nonconcave Utility Functions in Discrete-Time Financial Market Models," Mathematics of Operations Research, INFORMS, vol. 41(1), pages 146-173, February.
    12. Chen, Zheng & Li, Zhongfei & Zeng, Yan & Sun, Jingyun, 2017. "Asset allocation under loss aversion and minimum performance constraint in a DC pension plan with inflation risk," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 137-150.
    13. Jeon, Junkee & Koo, Hyeng Keun & Shin, Yong Hyun, 2018. "Portfolio selection with consumption ratcheting," Journal of Economic Dynamics and Control, Elsevier, vol. 92(C), pages 153-182.
    14. Gao, Jianjun & Li, Duan & Xie, Jinyan & Yang, Yiwen & Yao, Jing, 2024. "When Prospect Theory Meets Mean-Reverting Asset Returns: A Behavioral Dynamic Trading Model," Journal of Banking & Finance, Elsevier, vol. 162(C).
    15. Song, Jingjing & Bi, Xiuchun & Li, Rong & Zhang, Shuguang, 2017. "Optimal consumption and portfolio selection problems under loss aversion with downside consumption constraints," Applied Mathematics and Computation, Elsevier, vol. 299(C), pages 80-94.
    16. Bi, Xiuchun & Cui, Zhenyu & Fan, Jiacheng & Yuan, Lvning & Zhang, Shuguang, 2023. "Optimal investment problem under behavioral setting: A Lagrange duality perspective," Journal of Economic Dynamics and Control, Elsevier, vol. 156(C).
    17. Gao, Jianjun & Li, Yaoming & Shi, Yun & Xie, Jinyan, 2024. "Multi-period portfolio choice under loss aversion with dynamic reference point in serially correlated market," Omega, Elsevier, vol. 127(C).
    18. Lou, Youcheng & Strub, Moris S. & Li, Duan & Wang, Shouyang, 2021. "The impact of a reference point determined by social comparison on wealth growth and inequality," Journal of Economic Dynamics and Control, Elsevier, vol. 127(C).
    19. Miklos Rasonyi, 2014. "Optimal investment with bounded above utilities in discrete time markets," Papers 1409.2023, arXiv.org.
    20. Miklós Rásonyi & Andrea Rodrigues, 2013. "Optimal portfolio choice for a behavioural investor in continuous-time markets," Annals of Finance, Springer, vol. 9(2), pages 291-318, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:346:y:2019:i:c:p:205-218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.