IDEAS home Printed from https://ideas.repec.org/a/kap/annfin/v9y2013i2p291-318.html
   My bibliography  Save this article

Optimal portfolio choice for a behavioural investor in continuous-time markets

Author

Listed:
  • Miklós Rásonyi
  • Andrea Rodrigues

Abstract

The aim of this work consists in the study of the optimal investment strategy for a behavioural investor, whose preference towards risk is described by both a probability distortion and an S-shaped utility function. Within a continuous-time financial market framework and assuming that asset prices are modelled by semimartingales, we derive sufficient and necessary conditions for the well-posedness of the optimisation problem in the case of piecewise-power probability distortion and utility functions. Finally, under straightforwardly verifiable conditions, we further demonstrate the existence of an optimal strategy. Copyright Springer-Verlag Berlin Heidelberg 2013

Suggested Citation

  • Miklós Rásonyi & Andrea Rodrigues, 2013. "Optimal portfolio choice for a behavioural investor in continuous-time markets," Annals of Finance, Springer, vol. 9(2), pages 291-318, May.
  • Handle: RePEc:kap:annfin:v:9:y:2013:i:2:p:291-318
    DOI: 10.1007/s10436-012-0211-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10436-012-0211-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10436-012-0211-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Miklos Rasonyi & Lukasz Stettner, 2005. "On utility maximization in discrete-time financial market models," Papers math/0505243, arXiv.org.
    2. Robert Kast & André Lapied & Pascal Toquebeuf, 2008. "Updating Choquet Integrals , Consequentialism and Dynamic Consistency," ICER Working Papers - Applied Mathematics Series 04-2008, ICER - International Centre for Economic Research.
    3. Arjan B. Berkelaar & Roy Kouwenberg & Thierry Post, 2004. "Optimal Portfolio Choice under Loss Aversion," The Review of Economics and Statistics, MIT Press, vol. 86(4), pages 973-987, November.
    4. Harrison, J. Michael & Pliska, Stanley R., 1981. "Martingales and stochastic integrals in the theory of continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 215-260, August.
    5. Xue Dong He & Xun Yu Zhou, 2011. "Portfolio Choice Under Cumulative Prospect Theory: An Analytical Treatment," Management Science, INFORMS, vol. 57(2), pages 315-331, February.
    6. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    7. Hanqing Jin & Xun Yu Zhou, 2008. "Behavioral Portfolio Selection In Continuous Time," Mathematical Finance, Wiley Blackwell, vol. 18(3), pages 385-426, July.
    8. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    9. Bernard, Carole & Ghossoub, Mario, 2009. "Static Portfolio Choice under Cumulative Prospect Theory," MPRA Paper 15446, University Library of Munich, Germany.
    10. repec:dau:papers:123456789/2317 is not listed on IDEAS
    11. repec:dau:papers:123456789/5727 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mikl'os R'asonyi & Andrea Meireles-Rodrigues, 2018. "On Utility Maximisation Under Model Uncertainty in Discrete-Time Markets," Papers 1801.06860, arXiv.org, revised Jul 2020.
    2. Yan Dolinsky, 2020. "On Shortfall Risk Minimization for Game Options," Papers 2002.01528, arXiv.org.
    3. Huy N. Chau & Mikl'os R'asonyi, 2016. "Skorohod's representation theorem and optimal strategies for markets with frictions," Papers 1606.07311, arXiv.org, revised Apr 2017.
    4. Marcos Escobar-Anel & Michel Kschonnek & Rudi Zagst, 2022. "Portfolio optimization: not necessarily concave utility and constraints on wealth and allocation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(1), pages 101-140, February.
    5. Miklos Rasonyi, 2014. "Optimal investment with bounded above utilities in discrete time markets," Papers 1409.2023, arXiv.org.
    6. Mikl'os R'asonyi & Jos'e Gregorio Rodr'iguez-Villarreal, 2015. "Optimal investment under behavioural criteria in incomplete diffusion market models," Papers 1501.01504, arXiv.org.
    7. Miklós Rásonyi & Andrea Meireles‐Rodrigues, 2021. "On utility maximization under model uncertainty in discrete‐time markets," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 149-175, January.
    8. Mikl'os R'asonyi & Andrea Meireles Rodrigues, 2013. "Continuous-Time Portfolio Optimisation for a Behavioural Investor with Bounded Utility on Gains," Papers 1309.0362, arXiv.org, revised Mar 2014.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miklos Rasonyi & Andrea M. Rodrigues, 2012. "Optimal Portfolio Choice for a Behavioural Investor in Continuous-Time Markets," Papers 1202.0628, arXiv.org, revised Apr 2013.
    2. Laurence Carassus & Miklós Rásonyi, 2016. "Maximization of Nonconcave Utility Functions in Discrete-Time Financial Market Models," Mathematics of Operations Research, INFORMS, vol. 41(1), pages 146-173, February.
    3. Jakusch, Sven Thorsten & Meyer, Steffen & Hackethal, Andreas, 2019. "Taming models of prospect theory in the wild? Estimation of Vlcek and Hens (2011)," SAFE Working Paper Series 146, Leibniz Institute for Financial Research SAFE, revised 2019.
    4. De Giorgi, Enrico G. & Legg, Shane, 2012. "Dynamic portfolio choice and asset pricing with narrow framing and probability weighting," Journal of Economic Dynamics and Control, Elsevier, vol. 36(7), pages 951-972.
    5. Huy N. Chau & Mikl'os R'asonyi, 2016. "Skorohod's representation theorem and optimal strategies for markets with frictions," Papers 1606.07311, arXiv.org, revised Apr 2017.
    6. Miklos Rasonyi, 2014. "Optimal investment with bounded above utilities in discrete time markets," Papers 1409.2023, arXiv.org.
    7. Bin Zou, 2017. "Optimal Investment In Hedge Funds Under Loss Aversion," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(03), pages 1-32, May.
    8. Wang, Suxin & Rong, Ximin & Zhao, Hui, 2019. "Optimal investment and benefit payment strategy under loss aversion for target benefit pension plans," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 205-218.
    9. Alain Bensoussan & Abel Cadenillas & Hyeng Keun Koo, 2015. "Entrepreneurial Decisions on Effort and Project with a Nonconcave Objective Function," Mathematics of Operations Research, INFORMS, vol. 40(4), pages 902-914, October.
    10. Jaroslava Hlouskova & Jana Mikocziova & Rudolf Sivak & Peter Tsigaris, 2014. "Capital Income Taxation and Risk-Taking under Prospect Theory: The Continuous Distribution Case," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 64(5), pages 374-391, November.
    11. Curatola, Giuliano, 2017. "Optimal portfolio choice with loss aversion over consumption," The Quarterly Review of Economics and Finance, Elsevier, vol. 66(C), pages 345-358.
    12. Gao, Jianjun & Li, Duan & Xie, Jinyan & Yang, Yiwen & Yao, Jing, 2024. "When Prospect Theory Meets Mean-Reverting Asset Returns: A Behavioral Dynamic Trading Model," Journal of Banking & Finance, Elsevier, vol. 162(C).
    13. Yun Shi & Xiangyu Cui & Jing Yao & Duan Li, 2015. "Dynamic Trading with Reference Point Adaptation and Loss Aversion," Operations Research, INFORMS, vol. 63(4), pages 789-806, August.
    14. Bi, Xiuchun & Cui, Zhenyu & Fan, Jiacheng & Yuan, Lvning & Zhang, Shuguang, 2023. "Optimal investment problem under behavioral setting: A Lagrange duality perspective," Journal of Economic Dynamics and Control, Elsevier, vol. 156(C).
    15. Fortin, Ines & Hlouskova, Jaroslava & Tsigaris, Panagiotis, 2016. "The Consumption-Investment Decision of a Prospect Theory Household," Economics Series 322, Institute for Advanced Studies.
    16. Jaroslava Hlouskova & Panagiotis Tsigaris, 2012. "Capital income taxation and risk taking under prospect theory," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 19(4), pages 554-573, August.
    17. Gao, Jianjun & Li, Yaoming & Shi, Yun & Xie, Jinyan, 2024. "Multi-period portfolio choice under loss aversion with dynamic reference point in serially correlated market," Omega, Elsevier, vol. 127(C).
    18. Chao Gong & Chunhui Xu & Ji Wang, 2018. "An Efficient Adaptive Real Coded Genetic Algorithm to Solve the Portfolio Choice Problem Under Cumulative Prospect Theory," Computational Economics, Springer;Society for Computational Economics, vol. 52(1), pages 227-252, June.
    19. Lou, Youcheng & Strub, Moris S. & Li, Duan & Wang, Shouyang, 2021. "The impact of a reference point determined by social comparison on wealth growth and inequality," Journal of Economic Dynamics and Control, Elsevier, vol. 127(C).
    20. Armstrong, John & Brigo, Damiano, 2019. "Risk managing tail-risk seekers: VaR and expected shortfall vs S-shaped utility," Journal of Banking & Finance, Elsevier, vol. 101(C), pages 122-135.

    More about this item

    Keywords

    Behavioural optimal portfolio choice; Choquet integral ; Continuous-time markets; Probability distortion; S-shaped utility (value) function; Well-posedness and existence; G11;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:annfin:v:9:y:2013:i:2:p:291-318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.