IDEAS home Printed from https://ideas.repec.org/a/eee/dyncon/v36y2012i7p951-972.html
   My bibliography  Save this article

Dynamic portfolio choice and asset pricing with narrow framing and probability weighting

Author

Listed:
  • De Giorgi, Enrico G.
  • Legg, Shane

Abstract

This paper shows that the framework proposed by Barberis and Huang (2009) to incorporate narrow framing and loss aversion into dynamic models of portfolio choice and asset pricing can be extended to also account for probability weighting and for a value function that is convex on losses and concave on gains. We show that the addition of probability weighting and a convex–concave value function reinforces previous applications of narrow framing and cumulative prospect theory to understanding the stock market non-participation puzzle and the equity premium puzzle. Moreover, we show that a convex–concave value function generates new wealth effects that are consistent with empirical observations on stock market participation.

Suggested Citation

  • De Giorgi, Enrico G. & Legg, Shane, 2012. "Dynamic portfolio choice and asset pricing with narrow framing and probability weighting," Journal of Economic Dynamics and Control, Elsevier, vol. 36(7), pages 951-972.
  • Handle: RePEc:eee:dyncon:v:36:y:2012:i:7:p:951-972
    DOI: 10.1016/j.jedc.2012.01.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165188912000255
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jedc.2012.01.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barberis, Nicholas & Huang, Ming, 2009. "Preferences with frames: A new utility specification that allows for the framing of risks," Journal of Economic Dynamics and Control, Elsevier, vol. 33(8), pages 1555-1576, August.
    2. Yaari, Menahem E, 1987. "The Dual Theory of Choice under Risk," Econometrica, Econometric Society, vol. 55(1), pages 95-115, January.
    3. Epstein, Larry G. & Zin, Stanley E., 1990. "'First-order' risk aversion and the equity premium puzzle," Journal of Monetary Economics, Elsevier, vol. 26(3), pages 387-407, December.
    4. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    5. Mankiw, N. Gregory & Zeldes, Stephen P., 1991. "The consumption of stockholders and nonstockholders," Journal of Financial Economics, Elsevier, vol. 29(1), pages 97-112, March.
    6. Arjan B. Berkelaar & Roy Kouwenberg & Thierry Post, 2004. "Optimal Portfolio Choice under Loss Aversion," The Review of Economics and Statistics, MIT Press, vol. 86(4), pages 973-987, November.
    7. Nicholas Barberis & Ming Huang, 2008. "Stocks as Lotteries: The Implications of Probability Weighting for Security Prices," American Economic Review, American Economic Association, vol. 98(5), pages 2066-2100, December.
    8. Yacine AÏT‐SAHALI & Michael W. Brandt, 2001. "Variable Selection for Portfolio Choice," Journal of Finance, American Finance Association, vol. 56(4), pages 1297-1351, August.
    9. Quiggin, John, 1982. "A theory of anticipated utility," Journal of Economic Behavior & Organization, Elsevier, vol. 3(4), pages 323-343, December.
    10. Hanqing Jin & Xun Yu Zhou, 2008. "Behavioral Portfolio Selection In Continuous Time," Mathematical Finance, Wiley Blackwell, vol. 18(3), pages 385-426, July.
    11. David K. Backus & Bryan R. Routledge & Stanley E. Zin, 2005. "Exotic Preferences for Macroeconomists," NBER Chapters, in: NBER Macroeconomics Annual 2004, Volume 19, pages 319-414, National Bureau of Economic Research, Inc.
    12. Haim Levy, 2004. "Prospect Theory and Mean-Variance Analysis," The Review of Financial Studies, Society for Financial Studies, vol. 17(4), pages 1015-1041.
    13. Bryan R. Routledge & Stanley E. Zin, 2010. "Generalized Disappointment Aversion and Asset Prices," Journal of Finance, American Finance Association, vol. 65(4), pages 1303-1332, August.
    14. Ang, Andrew & Bekaert, Geert & Liu, Jun, 2005. "Why stocks may disappoint," Journal of Financial Economics, Elsevier, vol. 76(3), pages 471-508, June.
    15. Wachter, Jessica A., 2002. "Portfolio and Consumption Decisions under Mean-Reverting Returns: An Exact Solution for Complete Markets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 37(1), pages 63-91, March.
    16. Xue Dong He & Xun Yu Zhou, 2011. "Portfolio Choice Under Cumulative Prospect Theory: An Analytical Treatment," Management Science, INFORMS, vol. 57(2), pages 315-331, February.
    17. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    18. David A. Chapman & Valery Polkovnichenko, 2009. "First‐Order Risk Aversion, Heterogeneity, and Asset Market Outcomes," Journal of Finance, American Finance Association, vol. 64(4), pages 1863-1887, August.
    19. Grüne, Lars & Semmler, Willi, 2008. "Asset pricing with loss aversion," Journal of Economic Dynamics and Control, Elsevier, vol. 32(10), pages 3253-3274, October.
    20. De Giorgi, Enrico & Hens, Thorsten & Rieger, Marc Oliver, 2010. "Financial market equilibria with cumulative prospect theory," Journal of Mathematical Economics, Elsevier, vol. 46(5), pages 633-651, September.
    21. Kenneth L. Judd, 1998. "Numerical Methods in Economics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262100711, December.
    22. Nicholas Barberis & Ming Huang & Richard H. Thaler, 2006. "Individual Preferences, Monetary Gambles, and Stock Market Participation: A Case for Narrow Framing," American Economic Review, American Economic Association, vol. 96(4), pages 1069-1090, September.
    23. repec:bla:jfinan:v:59:y:2004:i:1:p:137-163 is not listed on IDEAS
    24. Rust, John, 1996. "Numerical dynamic programming in economics," Handbook of Computational Economics, in: H. M. Amman & D. A. Kendrick & J. Rust (ed.), Handbook of Computational Economics, edition 1, volume 1, chapter 14, pages 619-729, Elsevier.
    25. Merton, Robert C, 1973. "An Intertemporal Capital Asset Pricing Model," Econometrica, Econometric Society, vol. 41(5), pages 867-887, September.
    26. Bernard, Carole & Ghossoub, Mario, 2009. "Static Portfolio Choice under Cumulative Prospect Theory," MPRA Paper 15446, University Library of Munich, Germany.
    27. Nicholas Barberis & Ming Huang & Tano Santos, 2001. "Prospect Theory and Asset Prices," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 116(1), pages 1-53.
    28. Enrico Giorgi & Thorsten Hens & János Mayer, 2007. "Computational aspects of prospect theory with asset pricing applications," Computational Economics, Springer;Society for Computational Economics, vol. 29(3), pages 267-281, May.
    29. Mohammed Abdellaoui, 2000. "Parameter-Free Elicitation of Utility and Probability Weighting Functions," Management Science, INFORMS, vol. 46(11), pages 1497-1512, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jakusch, Sven Thorsten & Meyer, Steffen & Hackethal, Andreas, 2019. "Taming models of prospect theory in the wild? Estimation of Vlcek and Hens (2011)," SAFE Working Paper Series 146, Leibniz Institute for Financial Research SAFE, revised 2019.
    2. Chao Gong & Chunhui Xu & Ji Wang, 2018. "An Efficient Adaptive Real Coded Genetic Algorithm to Solve the Portfolio Choice Problem Under Cumulative Prospect Theory," Computational Economics, Springer;Society for Computational Economics, vol. 52(1), pages 227-252, June.
    3. Guo, Jing & He, Xue Dong, 2017. "Equilibrium asset pricing with Epstein-Zin and loss-averse investors," Journal of Economic Dynamics and Control, Elsevier, vol. 76(C), pages 86-108.
    4. Jakusch, Sven Thorsten, 2017. "On the applicability of maximum likelihood methods: From experimental to financial data," SAFE Working Paper Series 148, Leibniz Institute for Financial Research SAFE, revised 2017.
    5. Matteo Del Vigna, 2011. "Financial market equilibria with heterogeneous agents: CAPM and market segmentation," Working Papers - Mathematical Economics 2011-08, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
    6. Servaas van Bilsen & Roger J. A. Laeven & Theo E. Nijman, 2020. "Consumption and Portfolio Choice Under Loss Aversion and Endogenous Updating of the Reference Level," Management Science, INFORMS, vol. 66(9), pages 3927-3955, September.
    7. Xue Dong He & Xun Yu Zhou, 2011. "Portfolio Choice Under Cumulative Prospect Theory: An Analytical Treatment," Management Science, INFORMS, vol. 57(2), pages 315-331, February.
    8. Francisco Gomes & Michael Haliassos & Tarun Ramadorai, 2021. "Household Finance," Journal of Economic Literature, American Economic Association, vol. 59(3), pages 919-1000, September.
    9. Stephen G Dimmock & Roy Kouwenberg & Olivia S Mitchell & Kim Peijnenburg, 2021. "Household Portfolio Underdiversification and Probability Weighting: Evidence from the Field," The Review of Financial Studies, Society for Financial Studies, vol. 34(9), pages 4524-4563.
    10. Enrico G. De Giorgi & Shane Legg, 2009. "Portfolio Selection with Narrow Framing: Probability Weighting Matters," University of St. Gallen Department of Economics working paper series 2009 2009-12, Department of Economics, University of St. Gallen.
    11. Pasquariello, Paolo, 2014. "Prospect Theory and market quality," Journal of Economic Theory, Elsevier, vol. 149(C), pages 276-310.
    12. Bi, Xiuchun & Cui, Zhenyu & Fan, Jiacheng & Yuan, Lvning & Zhang, Shuguang, 2023. "Optimal investment problem under behavioral setting: A Lagrange duality perspective," Journal of Economic Dynamics and Control, Elsevier, vol. 156(C).
    13. Marianne Andries, 2012. "Consumption-based Asset Pricing Loss Aversion," 2012 Meeting Papers 571, Society for Economic Dynamics.
    14. Jaroslava Hlouskova & Jana Mikocziova & Rudolf Sivak & Peter Tsigaris, 2014. "Capital Income Taxation and Risk-Taking under Prospect Theory: The Continuous Distribution Case," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 64(5), pages 374-391, November.
    15. Haim Levy & Enrico G. De Giorgi & Thorsten Hens, 2012. "Two Paradigms and Nobel Prizes in Economics: a Contradiction or Coexistence?," European Financial Management, European Financial Management Association, vol. 18(2), pages 163-182, March.
    16. Jaroslava Hlouskova & Panagiotis Tsigaris, 2012. "Capital income taxation and risk taking under prospect theory," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 19(4), pages 554-573, August.
    17. Michael Best & Robert Grauer & Jaroslava Hlouskova & Xili Zhang, 2014. "Loss-Aversion with Kinked Linear Utility Functions," Computational Economics, Springer;Society for Computational Economics, vol. 44(1), pages 45-65, June.
    18. Kontosakos, Vasileios E. & Hwang, Soosung & Kallinterakis, Vasileios & Pantelous, Athanasios A., 2024. "Long-term dynamic asset allocation under asymmetric risk preferences," European Journal of Operational Research, Elsevier, vol. 312(2), pages 765-782.
    19. Curatola, Giuliano, 2016. "Optimal consumption and portfolio choice with loss aversion," SAFE Working Paper Series 130, Leibniz Institute for Financial Research SAFE.
    20. Fortin, Ines & Hlouskova, Jaroslava, 2024. "Prospect theory and asset allocation," The Quarterly Review of Economics and Finance, Elsevier, vol. 94(C), pages 214-240.

    More about this item

    Keywords

    Narrow framing; Cumulative prospect theory; Probability weighting function; Negative skewness; Dynamic programming;
    All these keywords.

    JEL classification:

    • D1 - Microeconomics - - Household Behavior
    • D8 - Microeconomics - - Information, Knowledge, and Uncertainty
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:36:y:2012:i:7:p:951-972. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jedc .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.