IDEAS home Printed from https://ideas.repec.org/a/eee/jbfina/v101y2019icp122-135.html
   My bibliography  Save this article

Risk managing tail-risk seekers: VaR and expected shortfall vs S-shaped utility

Author

Listed:
  • Armstrong, John
  • Brigo, Damiano

Abstract

We consider market players with tail-risk-seeking behaviour modelled by S-shaped utility, as introduced by Kahneman and Tversky. We argue that risk measures such as value at risk (VaR) and expected shortfall (ES) are ineffective in constraining such players, as such measures cannot reduce the traders expected S-shaped utilities. Indeed, when designing payoffs aiming to maximize utility under a VaR or ES risk limit, the players will attain the same supremum of expected utility with or without VaR or ES limits. By contrast, we show that risk management constraints based on a second more conventional concave utility function can reduce the maximum S-shaped utility that can be achieved by the investor. Indeed, product designs leading to progressively larger S-shaped utilities will lead to progressively lower expected constraining conventional utilities, violating the related risk limit. These results hold in a variety of market models, including the Black Scholes options model, and are particularly relevant for risk managers given the historical role of VaR and the endorsement of ES by the Basel committee in 2012–2013.

Suggested Citation

  • Armstrong, John & Brigo, Damiano, 2019. "Risk managing tail-risk seekers: VaR and expected shortfall vs S-shaped utility," Journal of Banking & Finance, Elsevier, vol. 101(C), pages 122-135.
  • Handle: RePEc:eee:jbfina:v:101:y:2019:i:c:p:122-135
    DOI: 10.1016/j.jbankfin.2019.01.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378426619300160
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jbankfin.2019.01.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Natalia Nolde & Johanna F. Ziegel, 2016. "Elicitability and backtesting: Perspectives for banking regulation," Papers 1608.05498, arXiv.org, revised Feb 2017.
    2. Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.
    3. Arjan B. Berkelaar & Roy Kouwenberg & Thierry Post, 2004. "Optimal Portfolio Choice under Loss Aversion," The Review of Economics and Statistics, MIT Press, vol. 86(4), pages 973-987, November.
    4. Basak, Suleyman & Shapiro, Alexander, 2001. "Value-at-Risk-Based Risk Management: Optimal Policies and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 14(2), pages 371-405.
    5. Shlomo Benartzi & Richard H. Thaler, 1995. "Myopic Loss Aversion and the Equity Premium Puzzle," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(1), pages 73-92.
    6. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    7. Xue Dong He & Xun Yu Zhou, 2011. "Portfolio Choice Under Cumulative Prospect Theory: An Analytical Treatment," Management Science, INFORMS, vol. 57(2), pages 315-331, February.
    8. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    9. Laurence Carassus & Miklós Rásonyi, 2015. "On Optimal Investment For A Behavioral Investor In Multiperiod Incomplete Market Models," Mathematical Finance, Wiley Blackwell, vol. 25(1), pages 115-153, January.
    10. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    11. Domenico Cuoco & Hua He & Sergei Isaenko, 2008. "Optimal Dynamic Trading Strategies with Risk Limits," Operations Research, INFORMS, vol. 56(2), pages 358-368, April.
    12. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    13. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    14. Rieger, Marc Oliver, 2012. "Optimal financial investments for non-concave utility functions," Economics Letters, Elsevier, vol. 114(3), pages 239-240.
    15. Francisco J. Gomes, 2005. "Portfolio Choice and Trading Volume with Loss-Averse Investors," The Journal of Business, University of Chicago Press, vol. 78(2), pages 675-706, March.
    16. Carlo Acerbi & Giacomo Scandolo, 2008. "Liquidity risk theory and coherent measures of risk," Quantitative Finance, Taylor & Francis Journals, vol. 8(7), pages 681-692.
    17. Nicholas Barberis & Ming Huang & Tano Santos, 2001. "Prospect Theory and Asset Prices," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 116(1), pages 1-53.
    18. Vicky Henderson, 2012. "Prospect Theory, Liquidation, and the Disposition Effect," Management Science, INFORMS, vol. 58(2), pages 445-460, February.
    19. Hanqing Jin & Xun Yu Zhou, 2008. "Behavioral Portfolio Selection In Continuous Time," Mathematical Finance, Wiley Blackwell, vol. 18(3), pages 385-426, July.
    20. Susanne Emmer & Marie Kratz & Dirk Tasche, 2013. "What is the best risk measure in practice? A comparison of standard measures," Papers 1312.1645, arXiv.org, revised Apr 2015.
    21. Xue Dong He & Hanqing Jin & Xun Yu Zhou, 2015. "Dynamic Portfolio Choice When Risk Is Measured by Weighted VaR," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 773-796, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huayuan Dong & Paolo Guasoni & Eberhard Mayerhofer, 2023. "Rogue traders," Finance and Stochastics, Springer, vol. 27(3), pages 539-603, July.
    2. Yousefi, Hamed & Yung, Kenneth & Najand, Mohammad, 2023. "From low resource slack to inflexibility: The share price effect of operational efficiency," International Review of Financial Analysis, Elsevier, vol. 90(C).
    3. Martin Herdegen & Nazem Khan, 2020. "Mean-$\rho$ portfolio selection and $\rho$-arbitrage for coherent risk measures," Papers 2009.05498, arXiv.org, revised Jul 2021.
    4. John Armstrong & Damiano Brigo & Alex S. L. Tse, 2020. "The importance of dynamic risk constraints for limited liability operators," Papers 2011.03314, arXiv.org.
    5. Fangyuan Zhang, 2023. "Non-concave portfolio optimization with average value-at-risk," Mathematics and Financial Economics, Springer, volume 17, number 3, March.
    6. John Armstrong & Damiano Brigo, 2019. "The ineffectiveness of coherent risk measures," Papers 1902.10015, arXiv.org, revised Oct 2020.
    7. Martin Herdegen & Nazem Khan & Cosimo Munari, 2024. "Risk, utility and sensitivity to large losses," Papers 2405.12154, arXiv.org.
    8. Armstrong, John & Brigo, Damiano, 2022. "Coherent risk measures alone are ineffective in constraining portfolio losses," Journal of Banking & Finance, Elsevier, vol. 140(C).
    9. Hui Mi & Zuo Quan Xu & Dongfang Yang, 2023. "Optimal Management of DC Pension Plan with Inflation Risk and Tail VaR Constraint," Papers 2309.01936, arXiv.org.
    10. Bi, Xiuchun & Cui, Zhenyu & Fan, Jiacheng & Yuan, Lvning & Zhang, Shuguang, 2023. "Optimal investment problem under behavioral setting: A Lagrange duality perspective," Journal of Economic Dynamics and Control, Elsevier, vol. 156(C).
    11. Martin Herdegen & Nazem Khan, 2022. "$\rho$-arbitrage and $\rho$-consistent pricing for star-shaped risk measures," Papers 2202.07610, arXiv.org, revised May 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jakusch, Sven Thorsten & Meyer, Steffen & Hackethal, Andreas, 2019. "Taming models of prospect theory in the wild? Estimation of Vlcek and Hens (2011)," SAFE Working Paper Series 146, Leibniz Institute for Financial Research SAFE, revised 2019.
    2. Servaas van Bilsen & Roger J. A. Laeven & Theo E. Nijman, 2020. "Consumption and Portfolio Choice Under Loss Aversion and Endogenous Updating of the Reference Level," Management Science, INFORMS, vol. 66(9), pages 3927-3955, September.
    3. Fangyuan Zhang, 2023. "Non-concave portfolio optimization with average value-at-risk," Mathematics and Financial Economics, Springer, volume 17, number 3, March.
    4. Alain Bensoussan & Abel Cadenillas & Hyeng Keun Koo, 2015. "Entrepreneurial Decisions on Effort and Project with a Nonconcave Objective Function," Mathematics of Operations Research, INFORMS, vol. 40(4), pages 902-914, October.
    5. Fulga, Cristinca, 2016. "Portfolio optimization under loss aversion," European Journal of Operational Research, Elsevier, vol. 251(1), pages 310-322.
    6. Lou, Youcheng & Strub, Moris S. & Li, Duan & Wang, Shouyang, 2021. "The impact of a reference point determined by social comparison on wealth growth and inequality," Journal of Economic Dynamics and Control, Elsevier, vol. 127(C).
    7. Guan, Guohui & Liang, Zongxia, 2016. "Optimal management of DC pension plan under loss aversion and Value-at-Risk constraints," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 224-237.
    8. Jaroslava Hlouskova & Jana Mikocziova & Rudolf Sivak & Peter Tsigaris, 2014. "Capital Income Taxation and Risk-Taking under Prospect Theory: The Continuous Distribution Case," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 64(5), pages 374-391, November.
    9. Jaroslava Hlouskova & Panagiotis Tsigaris, 2012. "Capital income taxation and risk taking under prospect theory," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 19(4), pages 554-573, August.
    10. Michael Best & Robert Grauer & Jaroslava Hlouskova & Xili Zhang, 2014. "Loss-Aversion with Kinked Linear Utility Functions," Computational Economics, Springer;Society for Computational Economics, vol. 44(1), pages 45-65, June.
    11. Curatola, Giuliano, 2016. "Optimal consumption and portfolio choice with loss aversion," SAFE Working Paper Series 130, Leibniz Institute for Financial Research SAFE.
    12. Vicky Henderson, 2012. "Prospect Theory, Liquidation, and the Disposition Effect," Management Science, INFORMS, vol. 58(2), pages 445-460, February.
    13. van Bilsen, Servaas & Laeven, Roger J.A., 2020. "Dynamic consumption and portfolio choice under prospect theory," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 224-237.
    14. Jeon, Junkee & Koo, Hyeng Keun & Shin, Yong Hyun, 2018. "Portfolio selection with consumption ratcheting," Journal of Economic Dynamics and Control, Elsevier, vol. 92(C), pages 153-182.
    15. Curatola, Giuliano, 2017. "Optimal portfolio choice with loss aversion over consumption," The Quarterly Review of Economics and Finance, Elsevier, vol. 66(C), pages 345-358.
    16. Jakusch, Sven Thorsten, 2017. "On the applicability of maximum likelihood methods: From experimental to financial data," SAFE Working Paper Series 148, Leibniz Institute for Financial Research SAFE, revised 2017.
    17. Rengifo, Erick W. & Trifan, Emanuela, 2007. "Investors Facing Risk: Loss Aversion and Wealth Allocation Between Risky and Risk-Free Assets," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 28063, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    18. Enrico Giorgi & Thorsten Hens, 2006. "Making prospect theory fit for finance," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 20(3), pages 339-360, September.
    19. Weiping Wu & Yu Lin & Jianjun Gao & Ke Zhou, 2023. "Mean-variance hybrid portfolio optimization with quantile-based risk measure," Papers 2303.15830, arXiv.org, revised Apr 2023.
    20. Berkelaar, Arjan & Kouwenberg, Roy, 2009. "From boom 'til bust: How loss aversion affects asset prices," Journal of Banking & Finance, Elsevier, vol. 33(6), pages 1005-1013, June.

    More about this item

    Keywords

    Optimal product design under risk constraints; Value at risk constraints; Expected shortfall constraints; Concave utility constraints; S-Shaped utility maximization; Limited liability investors; Tail-risk-seeking investors; Effective risk constraints; Concave utility risk constraints;
    All these keywords.

    JEL classification:

    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:101:y:2019:i:c:p:122-135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.