IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1408.2462.html
   My bibliography  Save this paper

Value-at-Risk time scaling for long-term risk estimation

Author

Listed:
  • Luca Spadafora
  • Marco Dubrovich
  • Marcello Terraneo

Abstract

In this paper we discuss a general methodology to compute the market risk measure over long time horizons and at extreme percentiles, which are the typical conditions needed for estimating Economic Capital. The proposed approach extends the usual market-risk measure, ie, Value-at-Risk (VaR) at a short-term horizon and 99% confidence level, by properly applying a scaling on the short-term Profit-and-Loss (P&L) distribution. Besides the standard square-root-of-time scaling, based on normality assumptions, we consider two leptokurtic probability density function classes for fitting empirical P&L datasets and derive accurately their scaling behaviour in light of the Central Limit Theorem, interpreting time scaling as a convolution problem. Our analyses result in a range of possible VaR-scaling approaches depending on the distribution providing the best fit to empirical data, the desired percentile level and the time horizon of the Economic Capital calculation. After assessing the different approaches on a test equity trading portfolio, it emerges that the choice of the VaR-scaling approach can affect substantially the Economic Capital calculation. In particular, the use of a convolution-based approach could lead to significantly larger risk measures (by up to a factor of four) than those calculated using Normal assumptions on the P&L distribution.

Suggested Citation

  • Luca Spadafora & Marco Dubrovich & Marcello Terraneo, 2014. "Value-at-Risk time scaling for long-term risk estimation," Papers 1408.2462, arXiv.org.
  • Handle: RePEc:arx:papers:1408.2462
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1408.2462
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dilip B. Madan & Peter P. Carr & Eric C. Chang, 1998. "The Variance Gamma Process and Option Pricing," Review of Finance, European Finance Association, vol. 2(1), pages 79-105.
    2. Eckhard Platen & Renata Rendek, 2007. "Empirical Evidence on Student-t Log-Returns of Diversified World Stock Indices," Research Paper Series 194, Quantitative Finance Research Centre, University of Technology, Sydney.
    3. Lemmens, D. & Liang, L.Z.J. & Tempere, J. & De Schepper, A., 2010. "Pricing bounds for discrete arithmetic Asian options under Lévy models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(22), pages 5193-5207.
    4. Elisa Luciano & Wim Schoutens, 2006. "A multivariate jump-driven financial asset model," Quantitative Finance, Taylor & Francis Journals, vol. 6(5), pages 385-402.
    5. Peter F. Christoffersen & Francis X. Diebold & Til Schuermann, 1998. "Horizon problems and extreme events in financial risk management," Economic Policy Review, Federal Reserve Bank of New York, vol. 4(Oct), pages 109-118.
    6. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    7. Madan, Dilip B & Seneta, Eugene, 1990. "The Variance Gamma (V.G.) Model for Share Market Returns," The Journal of Business, University of Chicago Press, vol. 63(4), pages 511-524, October.
    8. Stavros Degiannakis & Apostolos Kiohos, 2014. "Multivariate modelling of 10-day-ahead VaR and dynamic correlation for worldwide real estate and stock indices," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 41(2), pages 216-232, March.
    9. Harald Kinateder & Niklas Wagner, 2014. "Multiple-period market risk prediction under long memory: when VaR is higher than expected," Journal of Risk Finance, Emerald Group Publishing, vol. 15(1), pages 4-32, January.
    10. Danielsson, Jon & Zigrand, Jean-Pierre, 2006. "On time-scaling of risk and the square-root-of-time rule," Journal of Banking & Finance, Elsevier, vol. 30(10), pages 2701-2713, October.
    11. Stavros Degiannakis & Apostolos Kiohos, 2014. "Multivariate modelling of 10-day-ahead VaR and dynamic correlation for worldwide real estate and stock indices," Journal of Economic Studies, Emerald Group Publishing, vol. 41(2), pages 216 - 232, March.
    12. Wang, Jying-Nan & Yeh, Jin-Huei & Cheng, Nick Ying-Pin, 2011. "How accurate is the square-root-of-time rule in scaling tail risk: A global study," Journal of Banking & Finance, Elsevier, vol. 35(5), pages 1158-1169, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Jying-Nan & Du, Jiangze & Hsu, Yuan-Teng, 2018. "Measuring long-term tail risk: Evaluating the performance of the square-root-of-time rule," Journal of Empirical Finance, Elsevier, vol. 47(C), pages 120-138.
    2. Santanu Dutta & Tushar Kanti Powdel, 2023. "Modeling Long Term Return Distribution and Nonparametric Market Risk Estimation," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 257-289, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jying-Nan & Du, Jiangze & Hsu, Yuan-Teng, 2018. "Measuring long-term tail risk: Evaluating the performance of the square-root-of-time rule," Journal of Empirical Finance, Elsevier, vol. 47(C), pages 120-138.
    2. Erdinc Akyildirim & Alper A. Hekimoglu & Ahmet Sensoy & Frank J. Fabozzi, 2023. "Extending the Merton model with applications to credit value adjustment," Annals of Operations Research, Springer, vol. 326(1), pages 27-65, July.
    3. Göncü, Ahmet & Karahan, Mehmet Oğuz & Kuzubaş, Tolga Umut, 2016. "A comparative goodness-of-fit analysis of distributions of some Lévy processes and Heston model to stock index returns," The North American Journal of Economics and Finance, Elsevier, vol. 36(C), pages 69-83.
    4. Erik Kole & Thijs Markwat & Anne Opschoor & Dick van Dijk, 2017. "Forecasting Value-at-Risk under Temporal and Portfolio Aggregation," Journal of Financial Econometrics, Oxford University Press, vol. 15(4), pages 649-677.
    5. Gian Luca Tassinari & Corrado Corradi, 2013. "Pricing equity and debt tranches of collateralized funds of hedge fund obligations: An approach based on stochastic time change and Esscher-transformed martingale measure," Quantitative Finance, Taylor & Francis Journals, vol. 13(12), pages 1991-2010, December.
    6. Xiaochun Liu, 2017. "An integrated macro‐financial risk‐based approach to the stressed capital requirement," Review of Financial Economics, John Wiley & Sons, vol. 34(1), pages 86-98, September.
    7. Slim, Skander & Koubaa, Yosra & BenSaïda, Ahmed, 2017. "Value-at-Risk under Lévy GARCH models: Evidence from global stock markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 46(C), pages 30-53.
    8. Alexandre Petkovic, 2009. "Three essays on exotic option pricing, multivariate Lévy processes and linear aggregation of panel models," ULB Institutional Repository 2013/210357, ULB -- Universite Libre de Bruxelles.
    9. Nuerxiati Abudurexiti & Erhan Bayraktar & Takaki Hayashi & Hasanjan Sayit, 2024. "Two-fund separation under hyperbolically distributed returns and concave utility function," Papers 2410.04459, arXiv.org.
    10. Stavros Degiannakis & Pamela Dent & Christos Floros, 2014. "A Monte Carlo Simulation Approach to Forecasting Multi-period Value-at-Risk and Expected Shortfall Using the FIGARCH-skT Specification," Manchester School, University of Manchester, vol. 82(1), pages 71-102, January.
    11. Roman V. Ivanov, 2018. "Option Pricing In The Variance-Gamma Model Under The Drift Jump," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(04), pages 1-19, June.
    12. Zouheir Mighri & Raouf Jaziri, 2023. "Long-Memory, Asymmetry and Fat-Tailed GARCH Models in Value-at-Risk Estimation: Empirical Evidence from the Global Real Estate Markets," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 21(1), pages 41-97, March.
    13. Cathy W.S. Chen & Toshiaki Watanabe, 2019. "Bayesian modeling and forecasting of Value‐at‐Risk via threshold realized volatility," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 35(3), pages 747-765, May.
    14. Vilca, Filidor & Balakrishnan, N. & Zeller, Camila Borelli, 2014. "Multivariate Skew-Normal Generalized Hyperbolic distribution and its properties," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 73-85.
    15. Roman V. Ivanov, 2018. "A Credit-Risk Valuation under the Variance-Gamma Asset Return," Risks, MDPI, vol. 6(2), pages 1-25, May.
    16. Roberto Marfè, 2012. "A generalized variance gamma process for financial applications," Quantitative Finance, Taylor & Francis Journals, vol. 12(1), pages 75-87, June.
    17. Buchmann, Boris & Kaehler, Benjamin & Maller, Ross & Szimayer, Alexander, 2017. "Multivariate subordination using generalised Gamma convolutions with applications to Variance Gamma processes and option pricing," Stochastic Processes and their Applications, Elsevier, vol. 127(7), pages 2208-2242.
    18. Dilip B. Madan & Wim Schoutens & King Wang, 2017. "Measuring And Monitoring The Efficiency Of Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(08), pages 1-32, December.
    19. Lynn Boen & Florence Guillaume, 2020. "Towards a $$\Delta $$Δ-Gamma Sato multivariate model," Review of Derivatives Research, Springer, vol. 23(1), pages 1-39, April.
    20. Lam, K. & Chang, E. & Lee, M. C., 2002. "An empirical test of the variance gamma option pricing model," Pacific-Basin Finance Journal, Elsevier, vol. 10(3), pages 267-285, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1408.2462. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.