IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1405.7603.html
   My bibliography  Save this paper

Mixed Tempered Stable distribution

Author

Listed:
  • Edit Rroji
  • Lorenzo Mercuri

Abstract

In this paper we introduce a new parametric distribution, the Mixed Tempered Stable. It has the same structure of the Normal Variance Mean Mixtures but the normality assumption leaves place to a semi-heavy tailed distribution. We show that, by choosing appropriately the parameters of the distribution and under the concrete specification of the mixing random variable, it is possible to obtain some well-known distributions as special cases. We employ the Mixed Tempered Stable distribution which has many attractive features for modeling univariate returns. Our results suggest that it is enough flexible to accomodate different density shapes. Furthermore, the analysis applied to statistical time series shows that our approach provides a better fit than competing distributions that are common in the practice of finance.

Suggested Citation

  • Edit Rroji & Lorenzo Mercuri, 2014. "Mixed Tempered Stable distribution," Papers 1405.7603, arXiv.org.
  • Handle: RePEc:arx:papers:1405.7603
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1405.7603
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Dilip Madan, 2006. "Equilibrium asset pricing: with non-Gaussian factors and exponential utilities," Quantitative Finance, Taylor & Francis Journals, vol. 6(6), pages 455-463.
    2. Küchler Uwe & Tappe Stefan, 2009. "Option pricing in bilateral Gamma stock models," Statistics & Risk Modeling, De Gruyter, vol. 27(4), pages 281-307, December.
    3. Madan, Dilip B & Seneta, Eugene, 1990. "The Variance Gamma (V.G.) Model for Share Market Returns," The Journal of Business, University of Chicago Press, vol. 63(4), pages 511-524, October.
    4. Loregian, Angela & Mercuri, Lorenzo & Rroji, Edit, 2012. "Approximation of the variance gamma model with a finite mixture of normals," Statistics & Probability Letters, Elsevier, vol. 82(2), pages 217-224.
    5. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    6. Carr, Peter & Wu, Liuren, 2004. "Time-changed Levy processes and option pricing," Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.
    7. Li, Baibing & Martin, Elaine B. & Morris, A. Julian, 2002. "On principal component analysis in L1," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 471-474, September.
    8. Kim, Young Shin & Rachev, Svetlozar T. & Bianchi, Michele Leonardo & Fabozzi, Frank J., 2008. "Financial market models with Lévy processes and time-varying volatility," Journal of Banking & Finance, Elsevier, vol. 32(7), pages 1363-1378, July.
    9. Küchler, Uwe & Tappe, Stefan, 2008. "On the shapes of bilateral Gamma densities," Statistics & Probability Letters, Elsevier, vol. 78(15), pages 2478-2484, October.
    10. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    11. Fabio Bellini & Ernesto Salinelli, 2003. "Independent Component Analysis and Immunization: An Exploratory Study," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 6(07), pages 721-738.
    12. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    13. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hasan Fallahgoul & Gregoire Loeper, 2021. "Modelling tail risk with tempered stable distributions: an overview," Annals of Operations Research, Springer, vol. 299(1), pages 1253-1280, April.
    2. Lorenzo Mercuri & Edit Rroji, 2018. "Risk parity for Mixed Tempered Stable distributed sources of risk," Annals of Operations Research, Springer, vol. 260(1), pages 375-393, January.
    3. Asmerilda Hitaj & Friedrich Hubalek & Lorenzo Mercuri & Edit Rroji, 2016. "Multivariate Mixed Tempered Stable Distribution," Papers 1609.00926, arXiv.org, revised Oct 2016.
    4. Sampaio, Jhames M. & Morettin, Pedro A., 2020. "Stable Randomized Generalized Autoregressive Conditional Heteroskedastic Models," Econometrics and Statistics, Elsevier, vol. 15(C), pages 67-83.
    5. Hitaj, Asmerilda & Mercuri, Lorenzo & Rroji, Edit, 2015. "Portfolio selection with independent component analysis," Finance Research Letters, Elsevier, vol. 15(C), pages 146-159.
    6. Asmerilda Hitaj & Lorenzo Mercuri & Edit Rroji, 2019. "Sensitivity analysis of Mixed Tempered Stable parameters with implications in portfolio optimization," Computational Management Science, Springer, vol. 16(1), pages 71-95, February.
    7. Asmerilda Hitaj & Lorenzo Mercuri & Edit Rroji, 2019. "Lévy CARMA models for shocks in mortality," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 205-227, June.
    8. Lorenzo Mercuri & Edit Rroji, 2018. "Option pricing in an exponential MixedTS Lévy process," Annals of Operations Research, Springer, vol. 260(1), pages 353-374, January.
    9. Lorenzo Mercuri & Edit Rroji, 2014. "Parametric Risk Parity," Papers 1409.7933, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Christoffersen & Kris Jacobs & Chayawat Ornthanalai, 2012. "GARCH Option Valuation: Theory and Evidence," CREATES Research Papers 2012-50, Department of Economics and Business Economics, Aarhus University.
    2. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    3. Aldrich, Eric M. & Heckenbach, Indra & Laughlin, Gregory, 2016. "A compound duration model for high-frequency asset returns," Journal of Empirical Finance, Elsevier, vol. 39(PA), pages 105-128.
    4. Küchler, Uwe & Tappe, Stefan, 2013. "Tempered stable distributions and processes," Stochastic Processes and their Applications, Elsevier, vol. 123(12), pages 4256-4293.
    5. López Martín, María del Mar & García, Catalina García & García Pérez, José, 2012. "Treatment of kurtosis in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(5), pages 2032-2045.
    6. Slim, Skander & Koubaa, Yosra & BenSaïda, Ahmed, 2017. "Value-at-Risk under Lévy GARCH models: Evidence from global stock markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 46(C), pages 30-53.
    7. Liuren Wu, 2006. "Dampened Power Law: Reconciling the Tail Behavior of Financial Security Returns," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1445-1474, May.
    8. Bates, David S., 2012. "U.S. stock market crash risk, 1926–2010," Journal of Financial Economics, Elsevier, vol. 105(2), pages 229-259.
    9. David S. Bates, 2009. "U.S. Stock Market Crash Risk, 1926-2006," NBER Working Papers 14913, National Bureau of Economic Research, Inc.
    10. Zsurkis, Gabriel & Nicolau, João & Rodrigues, Paulo M.M., 2024. "First passage times in portfolio optimization: A novel nonparametric approach," European Journal of Operational Research, Elsevier, vol. 312(3), pages 1074-1085.
    11. Buchmann, Boris & Kaehler, Benjamin & Maller, Ross & Szimayer, Alexander, 2017. "Multivariate subordination using generalised Gamma convolutions with applications to Variance Gamma processes and option pricing," Stochastic Processes and their Applications, Elsevier, vol. 127(7), pages 2208-2242.
    12. Yacine Aït-Sahalia & Jean Jacod, 2012. "Analyzing the Spectrum of Asset Returns: Jump and Volatility Components in High Frequency Data," Journal of Economic Literature, American Economic Association, vol. 50(4), pages 1007-1050, December.
    13. Buckley, Winston & Long, Hongwei & Marshall, Mario, 2016. "Numerical approximations of optimal portfolios in mispriced asymmetric Lévy markets," European Journal of Operational Research, Elsevier, vol. 252(2), pages 676-686.
    14. M A Sánchez-Granero & J E Trinidad-Segovia & J Clara-Rahola & A M Puertas & F J De las Nieves, 2017. "A model for foreign exchange markets based on glassy Brownian systems," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-22, December.
    15. Budhi Surya & Ryan Kurniawan, 2014. "Optimal Portfolio Selection Based on Expected Shortfall Under Generalized Hyperbolic Distribution," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 21(3), pages 193-236, September.
    16. Göncü, Ahmet & Karahan, Mehmet Oğuz & Kuzubaş, Tolga Umut, 2016. "A comparative goodness-of-fit analysis of distributions of some Lévy processes and Heston model to stock index returns," The North American Journal of Economics and Finance, Elsevier, vol. 36(C), pages 69-83.
    17. Wang, Chou-Wen & Liu, Kai & Li, Bin & Tan, Ken Seng, 2022. "Portfolio optimization under multivariate affine generalized hyperbolic distributions," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 49-66.
    18. Naoto Kunitomo & Takashi Owada, 2004. "Empirical Likelihood Estimation of Levy Processes (Revised: March 2005)," CIRJE F-Series CIRJE-F-272, CIRJE, Faculty of Economics, University of Tokyo.
    19. Tong Liu & Yanlin Shi, 2022. "Innovation of the Component GARCH Model: Simulation Evidence and Application on the Chinese Stock Market," Mathematics, MDPI, vol. 10(11), pages 1-18, June.
    20. Sung Ik Kim, 2022. "ARMA–GARCH model with fractional generalized hyperbolic innovations," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-25, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1405.7603. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.