IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v6y2006i6p455-463.html
   My bibliography  Save this article

Equilibrium asset pricing: with non-Gaussian factors and exponential utilities

Author

Listed:
  • Dilip Madan

Abstract

We analyse the equilibrium asset pricing implications for an economy with single period return exposures to explicit non-Gaussian systematic factors, that may be both skewed and long-tailed, and Gaussian idiosyncratic components. Investors maximize expected exponential utility and equilibrium factor prices are shown to reflect exponentially tilted prices for non-Gaussian factor risk exposures. It is shown that these prices may be directly estimated from the univariate probability law of the factor exposure, given an estimate of average risk aversion in the economy. In addition, a residual form of the capital asset pricing model continues to hold and prices the idiosyncratic or Gaussian risks. The theory is illustrated on data for the US economy using independent components analysis to identify the factors and the variance gamma model to describe the probability law of the non-Gaussian factors. It is shown that the residual CAPM accounts for no more than 1% of the pricing of risky assets, while the exponentially tilted systematic factor risk exposures account for the bulk of risky asset pricing.

Suggested Citation

  • Dilip Madan, 2006. "Equilibrium asset pricing: with non-Gaussian factors and exponential utilities," Quantitative Finance, Taylor & Francis Journals, vol. 6(6), pages 455-463.
  • Handle: RePEc:taf:quantf:v:6:y:2006:i:6:p:455-463
    DOI: 10.1080/14697680600804437
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/14697680600804437
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697680600804437?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dilip B. Madan & Peter P. Carr & Eric C. Chang, 1998. "The Variance Gamma Process and Option Pricing," Review of Finance, European Finance Association, vol. 2(1), pages 79-105.
    2. Panayiotis Theodossiou, 1998. "Financial Data and the Skewed Generalized T Distribution," Management Science, INFORMS, vol. 44(12-Part-1), pages 1650-1661, December.
    3. Eberlein, Ernst & Keller, Ulrich & Prause, Karsten, 1998. "New Insights into Smile, Mispricing, and Value at Risk: The Hyperbolic Model," The Journal of Business, University of Chicago Press, vol. 71(3), pages 371-405, July.
    4. Dilip B. Madan & Frank Milne, 1991. "Option Pricing With V. G. Martingale Components," Working Paper 1159, Economics Department, Queen's University.
    5. Stephen A. Ross, 2013. "The Arbitrage Theory of Capital Asset Pricing," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 1, pages 11-30, World Scientific Publishing Co. Pte. Ltd..
    6. Madan, Dilip B & Seneta, Eugene, 1990. "The Variance Gamma (V.G.) Model for Share Market Returns," The Journal of Business, University of Chicago Press, vol. 63(4), pages 511-524, October.
    7. Rama Cont & Marc Potters & Jean-Philippe Bouchaud, 1997. "Scaling in stock market data: stable laws and beyond," Science & Finance (CFM) working paper archive 9705087, Science & Finance, Capital Fund Management.
    8. Andrew W. Lo, A. Craig MacKinlay, 1988. "Stock Market Prices do not Follow Random Walks: Evidence from a Simple Specification Test," The Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 41-66.
    9. Campbell R. Harvey & Akhtar Siddique, 2000. "Conditional Skewness in Asset Pricing Tests," Journal of Finance, American Finance Association, vol. 55(3), pages 1263-1295, June.
    10. Kraus, Alan & Litzenberger, Robert H, 1976. "Skewness Preference and the Valuation of Risk Assets," Journal of Finance, American Finance Association, vol. 31(4), pages 1085-1100, September.
    11. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    12. Rubinstein, Mark E., 1973. "The Fundamental Theorem of Parameter-Preference Security Valuation," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 8(1), pages 61-69, January.
    13. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    14. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    15. Yusif Simaan, 1993. "Portfolio Selection and Asset Pricing---Three-Parameter Framework," Management Science, INFORMS, vol. 39(5), pages 568-577, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dilip B. Madan, 2016. "Conic Portfolio Theory," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(03), pages 1-42, May.
    2. Dilip Madan, 2011. "Joint risk-neutral laws and hedging," IISE Transactions, Taylor & Francis Journals, vol. 43(12), pages 840-850.
    3. Francesco Bianchi & Lorenzo Mercuri & Edit Rroji, 2022. "Portfolio Selection with Irregular Time Grids: an example using an ICA-COGARCH(1, 1) approach," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 36(1), pages 57-85, March.
    4. Edit Rroji & Lorenzo Mercuri, 2015. "Mixed tempered stable distribution," Quantitative Finance, Taylor & Francis Journals, vol. 15(9), pages 1559-1569, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jakša Cvitanić & Vassilis Polimenis & Fernando Zapatero, 2008. "Optimal portfolio allocation with higher moments," Annals of Finance, Springer, vol. 4(1), pages 1-28, January.
    2. Dilip B. Madan & Robert J. Elliott, 2009. "Multiple Priors and Asset Pricing," Methodology and Computing in Applied Probability, Springer, vol. 11(2), pages 211-229, June.
    3. Penaranda, Francisco, 2007. "Portfolio choice beyond the traditional approach," LSE Research Online Documents on Economics 24481, London School of Economics and Political Science, LSE Library.
    4. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    5. George Bouzianis & Lane P. Hughston, 2019. "Determination Of The Lévy Exponent In Asset Pricing Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(01), pages 1-18, February.
    6. Dilip B. Madan & Wim Schoutens, 2019. "Equilibrium Asset Returns In Financial Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(02), pages 1-43, March.
    7. Winston Buckley & Sandun Perera, 2019. "Optimal demand in a mispriced asymmetric Carr–Geman–Madan–Yor (CGMY) economy," Annals of Finance, Springer, vol. 15(3), pages 337-368, September.
    8. Saralees Nadarajah & Bo Zhang & Stephen Chan, 2014. "Estimation methods for expected shortfall," Quantitative Finance, Taylor & Francis Journals, vol. 14(2), pages 271-291, February.
    9. Y. Malevergne & D. Sornette, 2007. "A two-Factor Asset Pricing Model and the Fat Tail Distribution of Firm Sizes," Papers physics/0702027, arXiv.org.
    10. Dilip B. Madan & Wim Schoutens, 2019. "Conic asset pricing and the costs of price fluctuations," Annals of Finance, Springer, vol. 15(1), pages 29-58, March.
    11. Mencía, Javier & Sentana, Enrique, 2009. "Multivariate location-scale mixtures of normals and mean-variance-skewness portfolio allocation," Journal of Econometrics, Elsevier, vol. 153(2), pages 105-121, December.
    12. Beaulieu, Marie-Claude & Dufour, Jean-Marie & Khalaf, Lynda, 2009. "Finite sample multivariate tests of asset pricing models with coskewness," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2008-2021, April.
    13. Laura Ballota & Griselda Deelstra & Grégory Rayée, 2015. "Quanto Implied Correlation in a Multi-Lévy Framework," Working Papers ECARES ECARES 2015-36, ULB -- Universite Libre de Bruxelles.
    14. Emmanuel Jurczenko & Bertrand Maillet & Paul Merlin, 2008. "Efficient Frontier for Robust Higher-order Moment Portfolio Selection," Post-Print halshs-00336475, HAL.
    15. C. James Hueng & Ruey Yau, 2006. "Investor preferences and portfolio selection: is diversification an appropriate strategy?," Quantitative Finance, Taylor & Francis Journals, vol. 6(3), pages 255-271.
    16. Houda Hafsa & Dorra Hmaied, 2012. "Are Downside Higher Order Co-Moments Priced? : Evidence From The French Market," The International Journal of Business and Finance Research, The Institute for Business and Finance Research, vol. 6(1), pages 65-81.
    17. Madan, Dilip B. & Wang, King, 2016. "Nonrandom price movements," Finance Research Letters, Elsevier, vol. 17(C), pages 103-109.
    18. Chi‐Hsiou Hung, 2008. "Return Predictability of Higher‐Moment CAPM Market Models," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 35(7‐8), pages 998-1022, September.
    19. Malevergne, Y. & Sornette, D., 2007. "Self-consistent asset pricing models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(1), pages 149-171.
    20. Paolella, Marc S. & Polak, Paweł, 2015. "COMFORT: A common market factor non-Gaussian returns model," Journal of Econometrics, Elsevier, vol. 187(2), pages 593-605.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:6:y:2006:i:6:p:455-463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.