IDEAS home Printed from https://ideas.repec.org/a/eee/ecosta/v15y2020icp67-83.html
   My bibliography  Save this article

Stable Randomized Generalized Autoregressive Conditional Heteroskedastic Models

Author

Listed:
  • Sampaio, Jhames M.
  • Morettin, Pedro A.

Abstract

The class of Randomized Generalized Autoregressive Conditional Heteroskedastic (R-GARCH) models represents a generalization of the GARCH models, adding a random term to the volatility with the purpose to better accommodate the heaviness of the tails expected for returns in the financial field. In fact, it is assumed that this term has stable distribution. Allowing both, returns and volatility, to have stable distribution, a new class of models to describe volatility arises: Stable Randomized Generalized Autoregressive Conditional Heteroskedastic Models (SR-GARCH). The indirect inference method is proposed to estimate the SR-GARCH parameters, theoretical results concerning dependence structure are obtained. Simulations and an empirical application are presented.

Suggested Citation

  • Sampaio, Jhames M. & Morettin, Pedro A., 2020. "Stable Randomized Generalized Autoregressive Conditional Heteroskedastic Models," Econometrics and Statistics, Elsevier, vol. 15(C), pages 67-83.
  • Handle: RePEc:eee:ecosta:v:15:y:2020:i:c:p:67-83
    DOI: 10.1016/j.ecosta.2018.11.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2452306218300947
    Download Restriction: Full text for ScienceDirect subscribers only. Contains open access articles

    File URL: https://libkey.io/10.1016/j.ecosta.2018.11.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joanna Nowicka-Zagrajek & Aleksander Weron, 2001. "Dependence structure of stable R-GARCH processes," HSC Research Reports HSC/01/02, Hugo Steinhaus Center, Wroclaw University of Technology.
    2. Piotr S. Kokoszka & Murad S. Taqqu, 1994. "Infinite Variance Stable Arma Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(2), pages 203-220, March.
    3. Marco J. Lombardi & Giorgio Calzolari, 2008. "Indirect Estimation of α-Stable Distributions and Processes," Econometrics Journal, Royal Economic Society, vol. 11(1), pages 193-208, March.
    4. Küchler, Uwe & Tappe, Stefan, 2013. "Tempered stable distributions and processes," Stochastic Processes and their Applications, Elsevier, vol. 123(12), pages 4256-4293.
    5. Calzolari, Giorgio & Halbleib, Roxana & Parrini, Alessandro, 2014. "Estimating GARCH-type models with symmetric stable innovations: Indirect inference versus maximum likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 158-171.
    6. Lombardi, Marco J., 2007. "Bayesian inference for [alpha]-stable distributions: A random walk MCMC approach," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2688-2700, February.
    7. Shin Kim, Young & Rachev, Svetlozar T. & Leonardo Bianchi, Michele & Fabozzi, Frank J., 2010. "Tempered stable and tempered infinitely divisible GARCH models," Journal of Banking & Finance, Elsevier, vol. 34(9), pages 2096-2109, September.
    8. Edit Rroji & Lorenzo Mercuri, 2015. "Mixed tempered stable distribution," Quantitative Finance, Taylor & Francis Journals, vol. 15(9), pages 1559-1569, September.
    9. de Vries, Casper G., 1991. "On the relation between GARCH and stable processes," Journal of Econometrics, Elsevier, vol. 48(3), pages 313-324, June.
    10. Zuqiang Qiou & Nalini Ravishanker, 1998. "Bayesian Inference for Time Series with Stable Innovations," Journal of Time Series Analysis, Wiley Blackwell, vol. 19(2), pages 235-249, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dominicy, Yves & Veredas, David, 2013. "The method of simulated quantiles," Journal of Econometrics, Elsevier, vol. 172(2), pages 235-247.
    2. Lombardi, Marco J. & Calzolari, Giorgio, 2009. "Indirect estimation of [alpha]-stable stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2298-2308, April.
    3. Marco J. Lombardi & Giorgio Calzolari, 2008. "Indirect Estimation of α-Stable Distributions and Processes," Econometrics Journal, Royal Economic Society, vol. 11(1), pages 193-208, March.
    4. Tong Liu & Yanlin Shi, 2022. "Innovation of the Component GARCH Model: Simulation Evidence and Application on the Chinese Stock Market," Mathematics, MDPI, vol. 10(11), pages 1-18, June.
    5. Calzolari, Giorgio & Halbleib, Roxana & Parrini, Alessandro, 2014. "Estimating GARCH-type models with symmetric stable innovations: Indirect inference versus maximum likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 158-171.
    6. Greg Hannsgen, 2011. "Infinite-variance, Alpha-stable Shocks in Monetary SVAR: Final Working Paper Version," Economics Working Paper Archive wp_682, Levy Economics Institute.
    7. Asmerilda Hitaj & Lorenzo Mercuri & Edit Rroji, 2019. "Lévy CARMA models for shocks in mortality," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 205-227, June.
    8. Peters, G.W. & Sisson, S.A. & Fan, Y., 2012. "Likelihood-free Bayesian inference for α-stable models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3743-3756.
    9. Garcia, René & Renault, Eric & Veredas, David, 2011. "Estimation of stable distributions by indirect inference," Journal of Econometrics, Elsevier, vol. 161(2), pages 325-337, April.
    10. Parrini, Alessandro, 2012. "Indirect estimation of GARCH models with alpha-stable innovations," MPRA Paper 38544, University Library of Munich, Germany.
    11. Shi, Yanlin & Feng, Lingbing, 2016. "A discussion on the innovation distribution of the Markov regime-switching GARCH model," Economic Modelling, Elsevier, vol. 53(C), pages 278-288.
    12. Hasan Fallahgoul & Gregoire Loeper, 2021. "Modelling tail risk with tempered stable distributions: an overview," Annals of Operations Research, Springer, vol. 299(1), pages 1253-1280, April.
    13. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    14. Lorenzo Mercuri & Edit Rroji, 2018. "Risk parity for Mixed Tempered Stable distributed sources of risk," Annals of Operations Research, Springer, vol. 260(1), pages 375-393, January.
    15. Asmerilda Hitaj & Lorenzo Mercuri & Edit Rroji, 2019. "Sensitivity analysis of Mixed Tempered Stable parameters with implications in portfolio optimization," Computational Management Science, Springer, vol. 16(1), pages 71-95, February.
    16. Calzolari, Giorgio & Halbleib, Roxana, 2018. "Estimating stable latent factor models by indirect inference," Journal of Econometrics, Elsevier, vol. 205(1), pages 280-301.
    17. Hitaj, Asmerilda & Mercuri, Lorenzo & Rroji, Edit, 2015. "Portfolio selection with independent component analysis," Finance Research Letters, Elsevier, vol. 15(C), pages 146-159.
    18. Yanlin Shi & Lingbing Feng & Tong Fu, 2020. "Markov Regime-Switching in-Mean Model with Tempered Stable Distribution," Computational Economics, Springer;Society for Computational Economics, vol. 55(4), pages 1275-1299, April.
    19. Frederick Ploeg & Aart Zeeuw, 1992. "International aspects of pollution control," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 2(2), pages 117-139, March.
    20. Deo, Rohit S., 2000. "Spectral tests of the martingale hypothesis under conditional heteroscedasticity," Journal of Econometrics, Elsevier, vol. 99(2), pages 291-315, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecosta:v:15:y:2020:i:c:p:67-83. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/econometrics-and-statistics .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.