IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v260y2018i1d10.1007_s10479-016-2394-y.html
   My bibliography  Save this article

Risk parity for Mixed Tempered Stable distributed sources of risk

Author

Listed:
  • Lorenzo Mercuri

    (University of Milan)

  • Edit Rroji

    (University of Trieste)

Abstract

In this paper we discuss a detailed methodology for dealing with Risk parity in a parametric context. In particular, we use the Independent Component Analysis for a linear decomposition of portfolio risk factors. Each Independent Component is modeled with the Mixed Tempered Stable distribution. Risk parity optimal portfolio weights are calculated for three risk measures: Volatility, modified Value At Risk and modified Expected Shortfall. Empirical analysis is discussed in terms of out-of-sample performance and portfolio diversification.

Suggested Citation

  • Lorenzo Mercuri & Edit Rroji, 2018. "Risk parity for Mixed Tempered Stable distributed sources of risk," Annals of Operations Research, Springer, vol. 260(1), pages 375-393, January.
  • Handle: RePEc:spr:annopr:v:260:y:2018:i:1:d:10.1007_s10479-016-2394-y
    DOI: 10.1007/s10479-016-2394-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-016-2394-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-016-2394-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Babaei, Sadra & Sepehri, Mohammad Mehdi & Babaei, Edris, 2015. "Multi-objective portfolio optimization considering the dependence structure of asset returns," European Journal of Operational Research, Elsevier, vol. 244(2), pages 525-539.
    2. repec:dau:papers:123456789/4688 is not listed on IDEAS
    3. Marco Corazza & Florence Legros & Cira Perna & Marilena Sibillo, 2017. "Mathematical and Statistical Methods for Actuarial Sciences and Finance," Post-Print hal-01776135, HAL.
    4. Kjersti Aas & Daniel Berg, 2009. "Models for construction of multivariate dependence - a comparison study," The European Journal of Finance, Taylor & Francis Journals, vol. 15(7-8), pages 639-659.
    5. Shin Kim, Young & Rachev, Svetlozar T. & Leonardo Bianchi, Michele & Fabozzi, Frank J., 2010. "Tempered stable and tempered infinitely divisible GARCH models," Journal of Banking & Finance, Elsevier, vol. 34(9), pages 2096-2109, September.
    6. Gourieroux, C. & Laurent, J. P. & Scaillet, O., 2000. "Sensitivity analysis of Values at Risk," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 225-245, November.
    7. Edit Rroji & Lorenzo Mercuri, 2015. "Mixed tempered stable distribution," Quantitative Finance, Taylor & Francis Journals, vol. 15(9), pages 1559-1569, September.
    8. Lionel Martellini & Volker Ziemann, 2010. "Improved Estimates of Higher-Order Comoments and Implications for Portfolio Selection," The Review of Financial Studies, Society for Financial Studies, vol. 23(4), pages 1467-1502, April.
    9. Rama Cont & Romain Deguest & Giacomo Scandolo, 2010. "Robustness and sensitivity analysis of risk measurement procedures," Post-Print hal-00413729, HAL.
    10. Tasche, Dirk, 2002. "Expected shortfall and beyond," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1519-1533, July.
    11. Madan, Dilip B & Seneta, Eugene, 1990. "The Variance Gamma (V.G.) Model for Share Market Returns," The Journal of Business, University of Chicago Press, vol. 63(4), pages 511-524, October.
    12. Ledoit, Olivier & Wolf, Michael, 2003. "Improved estimation of the covariance matrix of stock returns with an application to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 603-621, December.
    13. Rama Cont & Romain Deguest & Giacomo Scandolo, 2010. "Robustness and sensitivity analysis of risk measurement procedures," Quantitative Finance, Taylor & Francis Journals, vol. 10(6), pages 593-606.
    14. Asmerilda Hitaj & Lorenzo Mercuri, 2013. "Portfolio allocation using multivariate variance gamma models," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 27(1), pages 65-99, March.
    15. Mercuri, Lorenzo, 2008. "Option pricing in a Garch model with tempered stable innovations," Finance Research Letters, Elsevier, vol. 5(3), pages 172-182, September.
    16. Kamil J. Mizgier & Joseph M. Pasia, 2016. "Multiobjective optimization of credit capital allocation in financial institutions," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 24(4), pages 801-817, December.
    17. Küchler, Uwe & Tappe, Stefan, 2014. "Exponential stock models driven by tempered stable processes," Journal of Econometrics, Elsevier, vol. 181(1), pages 53-63.
    18. Loregian, Angela & Mercuri, Lorenzo & Rroji, Edit, 2012. "Approximation of the variance gamma model with a finite mixture of normals," Statistics & Probability Letters, Elsevier, vol. 82(2), pages 217-224.
    19. Merton, Robert C., 1980. "On estimating the expected return on the market : An exploratory investigation," Journal of Financial Economics, Elsevier, vol. 8(4), pages 323-361, December.
    20. Rosinski, Jan, 2007. "Tempering stable processes," Stochastic Processes and their Applications, Elsevier, vol. 117(6), pages 677-707, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Asmerilda Hitaj & Lorenzo Mercuri & Edit Rroji, 2019. "Sensitivity analysis of Mixed Tempered Stable parameters with implications in portfolio optimization," Computational Management Science, Springer, vol. 16(1), pages 71-95, February.
    2. Michele Leonardo Bianchi & Asmerilda Hitaj & Gian Luca Tassinari, 2020. "Multivariate non-Gaussian models for financial applications," Papers 2005.06390, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lorenzo Mercuri & Edit Rroji, 2014. "Parametric Risk Parity," Papers 1409.7933, arXiv.org.
    2. Hitaj, Asmerilda & Mercuri, Lorenzo & Rroji, Edit, 2015. "Portfolio selection with independent component analysis," Finance Research Letters, Elsevier, vol. 15(C), pages 146-159.
    3. Michele Leonardo Bianchi & Asmerilda Hitaj & Gian Luca Tassinari, 2020. "Multivariate non-Gaussian models for financial applications," Papers 2005.06390, arXiv.org.
    4. Tan, Zhengxun & Xiao, Binuo & Huang, Yilong & Zhou, Li, 2021. "Value at risk and return in Chinese and the US stock markets: Double long memory and fractional cointegration," The North American Journal of Economics and Finance, Elsevier, vol. 56(C).
    5. Giovanni Paolo Crespi & Elisa Mastrogiacomo, 2020. "Qualitative robustness of set-valued value-at-risk," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(1), pages 25-54, February.
    6. Asmerilda Hitaj & Lorenzo Mercuri & Edit Rroji, 2019. "Lévy CARMA models for shocks in mortality," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 205-227, June.
    7. Steven Kou & Xianhua Peng, 2016. "On the Measurement of Economic Tail Risk," Operations Research, INFORMS, vol. 64(5), pages 1056-1072, October.
    8. Marie Kratz & Yen H Lok & Alexander J Mcneil, 2016. "Multinomial var backtests: A simple implicit approach to backtesting expected shortfall," Working Papers hal-01424279, HAL.
    9. Marcelo Brutti Righi & Paulo Sergio Ceretta, 2015. "Shortfall Deviation Risk: An alternative to risk measurement," Papers 1501.02007, arXiv.org, revised May 2016.
    10. Asmerilda Hitaj & Giovanni Zambruno, 2016. "Are Smart Beta strategies suitable for hedge fund portfolios?," Review of Financial Economics, John Wiley & Sons, vol. 29(1), pages 37-51, April.
    11. Piergiacomo Sabino & Nicola Cufaro Petroni, 2022. "Fast simulation of tempered stable Ornstein–Uhlenbeck processes," Computational Statistics, Springer, vol. 37(5), pages 2517-2551, November.
    12. Steven Kou & Xianhua Peng & Chris C. Heyde, 2013. "External Risk Measures and Basel Accords," Mathematics of Operations Research, INFORMS, vol. 38(3), pages 393-417, August.
    13. Szymon Borak & Adam Misiorek & Rafał Weron, 2010. "Models for Heavy-tailed Asset Returns," SFB 649 Discussion Papers SFB649DP2010-049, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    14. Rossello, Damiano, 2015. "Ranking of investment funds: Acceptability versus robustness," European Journal of Operational Research, Elsevier, vol. 245(3), pages 828-836.
    15. Imre Kondor, 2014. "Estimation Error of Expected Shortfall," Papers 1402.5534, arXiv.org.
    16. Suzanne Emmer & Marie Kratz & Dirk Tasche, 2013. "What Is the Best Risk Measure in Practice? A Comparison of Standard Measures," Working Papers hal-00921283, HAL.
    17. Hasan Fallahgoul & Gregoire Loeper, 2021. "Modelling tail risk with tempered stable distributions: an overview," Annals of Operations Research, Springer, vol. 299(1), pages 1253-1280, April.
    18. Steven Kou & Xianhua Peng, 2014. "On the Measurement of Economic Tail Risk," Papers 1401.4787, arXiv.org, revised Aug 2015.
    19. Nicola Cufaro Petroni & Piergiacomo Sabino, 2020. "Tempered stable distributions and finite variation Ornstein-Uhlenbeck processes," Papers 2011.09147, arXiv.org.
    20. repec:hal:journl:hal-00921283 is not listed on IDEAS
    21. Dilip B. Madan, 2016. "Conic Portfolio Theory," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(03), pages 1-42, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:260:y:2018:i:1:d:10.1007_s10479-016-2394-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.